Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T08:01:48.941Z Has data issue: false hasContentIssue false

Intracellular calcium levels in the Plasmodium berghei ookinete

Published online by Cambridge University Press:  08 September 2008

I. SIDÉN-KIAMOS*
Affiliation:
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastiras 110, Vassilika Vouton, 700 13 Heraklion, Crete, Greece
C. LOUIS
Affiliation:
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastiras 110, Vassilika Vouton, 700 13 Heraklion, Crete, Greece Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece
*
*Corresponding author: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastiras 110, Vassilika Vouton, 700 13 Heraklion, Crete, Greece. Tel: +30 2810391118. Fax: +30 2810391104. E-mail: [email protected]

Summary

Ookinetes are the motile and invasive stages of Plasmodium parasites in the mosquito host. Here we explore the role of intracellular Ca2+ in ookinete survival and motility as well as in the formation of oocysts in vitro in the rodent malaria parasite Plasmodium berghei. Treatment with the Ca2+ ionophore A23187 induced death of the parasite, an effect that could be prevented if the ookinetes were co-incubated with insect cells before incubation with the ionophore. Treatment with the intracellular calcium chelator BAPTA/AM resulted in increased formation of oocysts in vitro. Calcium imaging in the ookinete using fluorescent calcium indicators revealed that the purified ookinetes have an intracellular calcium concentration in the range of 100 nm. Intracellular calcium levels decreased substantially when the ookinetes were incubated with insect cells and their motility was concomitantly increased. Our results suggest a pleiotropic role for intracellular calcium in the ookinete.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B. J. A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Molecular Biology of the Cell, 4th Edn. Garland Science, New York.Google Scholar
Arrizabalaga, G., Ruiz, F., Moreno, S. and Boothroyd, J. C. (2004). Ionophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. Journal of Cell Biology 165, 653662.Google Scholar
Black, M. W., Arrizabalaga, G. and Boothroyd, J. C. (2000). Ionophore-resistant mutants of Toxoplasma gondii reveal host cell permeabilization as an early event in egress. Molecular and Cellular Biology 20, 93999408.Google Scholar
Carruthers, V. B., Giddings, O. K. and Sibley, L. D. (1999 a). Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cellular Microbiology 1, 225235.CrossRefGoogle ScholarPubMed
Carruthers, V. B., Moreno, S. N. and Sibley, L. D. (1999 b). Ethanol and acetaldehyde elevate intracellular [Ca2+] and stimulate microneme discharge in Toxoplasma gondii. The Biochemical Journal 342, 379386.CrossRefGoogle ScholarPubMed
Carruthers, V. B. and Sibley, L. D. (1999). Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Molecular Microbiology 31, 421428.CrossRefGoogle ScholarPubMed
Freyvogel, T. A. (1966). Shape, movement in situ and locomotion of plasmodial ookinete. Acta Tropica 23, 201222.Google Scholar
Hirai, M., Arai, M., Kawai, S. and Matsuoka, H. (2006). PbGCbeta is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite life cycle in mosquitoes. Journal of Biochemistry (Tokyo) 140, 747757.CrossRefGoogle ScholarPubMed
Ishino, T., Orito, Y., Chinzei, Y. and Yuda, M. (2006). A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Molecular Microbiology 59, 11751184.CrossRefGoogle Scholar
Keeley, A. and Soldati, D. (2004). The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends in Cell Biology 14, 528532.CrossRefGoogle ScholarPubMed
Lovett, J. L., Marchesini, N., Moreno, S. N. and Sibley, L. D. (2002). Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. Journal of Biological Chemistry 277, 2587025876.Google Scholar
Lovett, J. L. and Sibley, L. D. (2003). Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. Journal of Cell Science 116, 30093016.CrossRefGoogle ScholarPubMed
Mondragon, R. and Frixione, E. (1996). Ca(2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology 43, 120127.Google Scholar
Opitz, C. and Soldati, D. (2002). ‘The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Molecular Microbiology 45, 597604.CrossRefGoogle ScholarPubMed
Rohrbach, P., Friedrich, O., Hentschel, J., Plattner, H., Fink, R. H. and Lanzer, M. (2005). Quantitative calcium measurements in subcellular compartments of Plasmodium falciparum-infected erythrocytes. Journal of Biological Chemistry 280, 2796027969.CrossRefGoogle ScholarPubMed
Siden-Kiamos, I., Ecker, A., Nyback, S., Louis, C., Sinden, R. E. and Billker, O. (2006 a). Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Molecular Microbiology 60, 13551363.CrossRefGoogle ScholarPubMed
Siden-Kiamos, I., Pinder, J. C. and Louis, C. (2006 b). Involvement of actin and myosins in Plasmodium berghei ookinete motility. Molecular and Biochemical Parasitology 150, 308317.CrossRefGoogle ScholarPubMed
Siden-Kiamos, I., Vlachou, D., Margos, G., Beetsma, A., Waters, A. P., Sinden, R. E. and Louis, C. (2000). Distinct roles for pbs21 and pbs25 in the in vitro ookinete to oocyst transformation of Plasmodium berghei. Journal of Cell Science 113 Pt 19, 34193426.Google Scholar
Singh, K. R. (1971). Propagation of arboviruses in Singh's Aedes cell lines. I. Growth of arboviruses in Aedes albopictus and Aedes aegypti cell lines. Current Topics in Microbiology and Immunology 55, 127133.Google Scholar
Vieira, M. C. and Moreno, S. N. (2000). Mobilization of intracellular calcium upon attachment of Toxoplasma gondii tachyzoites to human fibroblasts is required for invasion. Molecular and Biochemical Parasitology 106, 157162.Google Scholar
Vlachou, D., Zimmermann, T., Cantera, R., Janse, C. J., Waters, A. P. and Kafatos, F. C. (2004). Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cellular Microbiology 6, 671685.CrossRefGoogle ScholarPubMed
Vontas, J., Siden-Kiamos, I., Papagiannakis, G., Karras, M., Waters, A. P. and Louis, C. (2005). Gene expression in Plasmodium berghei ookinetes and early oocysts in a co-culture system with mosquito cells. Molecular and Biochemical Parasitology 139, 113.CrossRefGoogle Scholar
Wetzel, D. M., Chen, L. A., Ruiz, F. A., Moreno, S. N. and Sibley, L. D. (2004). Calcium-mediated protein secretion potentiates motility in Toxoplasma gondii. Journal of Cell Science 117, 57395748.Google Scholar
Winger, L. A., Tirawanchai, N., Nicholas, J., Carter, H. E., Smith, J. E. and Sinden, R. E. (1988). Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kD determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunology 10, 193207.CrossRefGoogle Scholar
Zieler, H. and Dvorak, J. A. (2000). Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proceedings of the National Academy of Sciences, USA 97, 1151611521.Google Scholar