Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T15:27:57.176Z Has data issue: false hasContentIssue false

The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis

Published online by Cambridge University Press:  16 October 2009

L. M. KRUITBOS
Affiliation:
Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
S. HERITAGE
Affiliation:
Forestry Commission, Northern Research Station, Roslin. MidlothianEH25 9SY, UK
S. HAPCA
Affiliation:
Simbios Centre, University of Abertay Dundee, 40 Bell Street, DundeeDD1 1HG, UK
M. J. WILSON*
Affiliation:
Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
*
*Corresponding author: Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, AberdeenAB24 3UU, UK. Tel: +44 1224 272845. Fax: +44(0) 1224 272945. E-mail: [email protected]

Summary

Entomopathogenic nematodes (EPN) are soil-transmitted parasites and their foraging strategies are believed to range from ‘ambush’ to ‘cruise’ foragers. However, research on their behaviour has not considered the natural habitat of these nematodes. We hypothesized that EPN behaviour would be influenced by soil habitat quality and tested this hypothesis using 2 EPN species Steinernema carpocapsae (an ‘ambusher’) and Heterorhabditis megidis (a ‘cruiser’) in 2 contrasting habitats, sand and peat. As predicted from previous studies, in sand most S. carpocapsae remained at the point of application and showed no taxis towards hosts, but in peat S. carpocapsae dispersed much more and showed a highly significant taxis towards hosts. H. megidis dispersed well in both media, but only showed taxis towards hosts in sand. In outdoor mesocosms in which both species were applied, S. carpocapsae outcompeted H. megidis in terms of host finding in peat, whereas the opposite was true in sand. Our data suggest that these 2 EPN may be habitat specialists and highlight the difficulties of studying soil-transmitted parasites in non-soil media.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, J. F. and Gaugler, R. (1993). Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterohabitidae and Steinernematidae). Behaviour 126, 155169.CrossRefGoogle Scholar
Campbell, J. F. and Kaya, H. K. (1999). How and why a parasitic nematode jumps. Nature, London 397, 485486.CrossRefGoogle Scholar
Campbell, J. F., Lewis, E., Yoder, F. and Gaugler, R. (1996). Entomopathogenic nematode (Heterorhabditidae and Steinernematidae) spatial distribution in turfgrass. Parasitology 113, 473482.CrossRefGoogle ScholarPubMed
Cooper, W. E. (2005). The foraging mode controversy: both continuous variation and clustering of foraging movements occur. Journal of Zoology 267, 179190.CrossRefGoogle Scholar
Dillon, A. B., Rolston, A. N., Meade, C. V., Downes, M. J. and Griffin, C. T. (2008). Establishment, persistence, and introgression of entomopathogenic nematodes in a forest ecosystem. Ecological Applications 18, 735747.CrossRefGoogle Scholar
Dillon, A. B., Ward, D., Downes, M. J. and Griffin, C. T. (2006). Suppression of the large pine weevil Hylobius abietis (Coleoptera: Curculionidae) in pine stumps by entomopathogenic nematodes with different foraging strategies. Biological Control 38, 217226.CrossRefGoogle Scholar
Emelianoff, V., Chapuis, E., Le Brun, N., Chiral, M., Moulia, C. and Ferdy, J-B. (2008). A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Evolution 62, 932942.CrossRefGoogle ScholarPubMed
Enders, F. (1975). The influence of hunting manner on prey size, particularly in spiders with long attack distances (Araneidae, Linyphiidae and Salticidae). American Naturalist 109, 737763.CrossRefGoogle Scholar
Grewal, P. S., Lewis, E. E., Gaugler, R. and Campbell, J. F. (1994). Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207215.CrossRefGoogle Scholar
Hara, A. H., Gaugler, R., Kaya, H. K. and Lebeck, L. M. (1991). Natural populations of entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) from the Hawaiian Islands. Environmental Entomology 20, 211216.CrossRefGoogle Scholar
Hominick, W. M. (2002). Biogeography. In Entomopathogenic Nematology (ed. Gaugler, R.), pp. 115144. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Johnson, M. A., Leal, M., Schettino, L. R., Lara, A. C., Revell, L. J. and Losos, J. B. (2008). A phylogenetic perspective on foraging mode evolution and habitat use in West Indian Anolis lizards. Animal Behaviour 75, 555563.CrossRefGoogle Scholar
Kaya, H. K. and Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181206.CrossRefGoogle Scholar
Kaya, H. K. and Stock, S. P. (1997). Techniques in insect nematology. In Manual of Techniques in Insect Pathology (ed. Lacey, L. A.), pp. 281324. Academic Press, London, UK.CrossRefGoogle Scholar
Kaya, H. K., Aguillera, M. M., Alumai, A., Choo, H. Y., Torre, M., Fodor, A., Ganguly, S., Hazir, S., Lakatos, T., Pye, A., Wilson, M., Yamanaka, S., Yang, H. and Ehlers, R.-U. (2006). Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological Control 38, 134155.CrossRefGoogle Scholar
Klein, M. G. (1990). Efficacy against soil-inhabiting insect pests. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. and Kaya, H. K.), pp. 195214. CRC Press, Boca Raton, FL, USA.Google Scholar
Lacey, L. A. and Unruh, T. R. (1998). Entomopathogenic nematodes for control of codling moth, Cydia pomonella (Lepidoptera: Torticidae): effect of nematode species, concentration, temperature, and humidity. Biological Control 13, 190197.CrossRefGoogle Scholar
Lewis, E. E. (2002). Behavioural ecology. In Entomopathogenic Nematology (ed. Gaugler, R.), pp. 205224. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Lewis, E. E., Gaugler, R. and Harrison, R. (1992). Entomopathogenic nematode host finding: response to host cues by cruise and ambush foragers. Parasitology 105, 103107.CrossRefGoogle Scholar
Lewis, E. E., Gaugler, R. and Harrison, R. (1993). Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology 71, 765769.CrossRefGoogle Scholar
Moermond, T. C. (1979). The influence of habitat structure on Anolis foraging behaviour. Behaviour 70, 147167.CrossRefGoogle Scholar
Nguyen, K. B. (2007). Methodology, morphology and identification. In Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts (ed. Nguyen, N. B. and Hunt, D. J.), pp. 59–119. Koninklijke Brill NV, The Netherlands.CrossRefGoogle Scholar
Powers, T. O., Neher, D. A., Mullin, P., Esquivel, A., Giblin-Davis, R. M., Kanzaki, N., Stock, S. P., Mora, M. M. and Uribe-Lorio, L. (2009). Tropical nematode diversity: vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Molecular Ecology 18, 985996.CrossRefGoogle Scholar
Pyke, G. H., Pulliam, H. R. and Charnov, E. L. (1977). Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52, 137154.CrossRefGoogle Scholar
Ramos-Rodríguez, O., Campbell, J. F., Christen, J. M., Shapiro-Ilan, D. I., Lewis, E. E. and Ramaswamy, S. B. (2007). Attraction behaviour of three entomopathogenic nematode species towards infected and uninfected hosts. Parasitology 134, 729738.CrossRefGoogle ScholarPubMed
Reed, E. M. and Wallace, H. R. (1965). Leaping locomotion by an insect-parasitic nematode. Nature, London 206, 210211.CrossRefGoogle Scholar
Robinson, S. K. and Holmes, R. T. (1982). Foraging behavior of forest birds: the relationship among search tactics, diet, and habitat structure. Ecology 63, 19181931.CrossRefGoogle Scholar
San-Blas, E. and Gowen, S. R. (2008). Facultative scavenging as a survival strategy of entomopathogenic nematodes. International Journal for Parasitology 38, 8591.CrossRefGoogle ScholarPubMed
Spiridonov, S. E., Reid, A. P., Podrucka, K., Subbotin, S. A. and Moens, M. (2004). Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematology 6, 547566.CrossRefGoogle Scholar
Stock, S. P., Pryor, B. M. and Kaya, H. K. (1999). Distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in natural habitats in California, USA. Biodiversity and Conservation 8, 535549.CrossRefGoogle Scholar
Torr, P., Heritage, S. and Wilson, M. J. (2004). Vibrations as a novel signal for host location by parasitic nematodes. International Journal for Parasitology 34, 997999.CrossRefGoogle ScholarPubMed
Torr, P., Heritage, S. and Wilson, M. J. (2007 a). Steinernema kraussei, an indigenous nematode found in coniferous woodlands: efficacy and field persistence against Hylobius abietis. Agricultural and Forest Entomology 9, 181188.CrossRefGoogle Scholar
Torr, P., Spiridonov, S. E., Heritage, S. and Wilson, M. J. (2007 b). Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions. Journal of Animal Ecology 76, 238245.CrossRefGoogle ScholarPubMed
Young, I. M. and Crawford, J. W. (2004). Interactions and self-organization in the soil-microbe complex. Science 304, 16341637.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kruitbos supplementary material

Movie.mpg

Download Kruitbos supplementary material(File)
File 5.7 MB