Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T16:54:48.210Z Has data issue: false hasContentIssue false

Immunological and pathological responses in BALB/c mice induced by genetic administration of Tc13 Tul antigen of Trypanosoma cruzi

Published online by Cambridge University Press:  15 February 2006

G. A. GARCÍA
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
M. R. ARNAIZ
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
S. A. LAUCELLA
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
M. I. ESTEVA
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
N. AINCIART
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina Present address: Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, Argentina.
A. RIARTE
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
P. A. GARAVAGLIA
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
L. E. FICHERA
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina
A. M. RUIZ
Affiliation:
Insituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’. Paseo Colón 568. (1063) Buenos Aires, Argentina

Abstract

Tc13 is a trans-sialidase family protein of Trypanosoma cruzi, the aetiological agent of Chagas' disease. Recently, in vitro studies had suggested that Tc13 might participate in the pathogenesis of the disease. In order to study the role of Tc13 antigens in an in vivo model, we administered plasmid DNA encoding a Tc13 antigen from the Tulahuén strain (Tc13 Tul) to BALB/c mice and evaluated the immunological and pathological manifestations as well as the capacity of this antigen to confer protection against T. cruzi infection. Tc13 Tul immunization did not elicit a detectable humoral immune response but induced specific memory T-cells with no capacity to produce IFN-γ. Five months after DNA-immunization with Tc13 Tul, signs of hepatotoxicity and reactive changes in the heart, liver and spleen were observed in 40–80% of mice. When Tc13 Tul DNA-immunized animals were challenged with trypomastigotes, a significant decrease in parasitaemia in early and late acute phase was observed without modification in the survival rate. Surprisingly, Tc13 Tul-immunized mice chronically infected with T. cruzi showed a decrease in the severity of heart damage. We conclude that, in BALB/c mice, genetic immunization with Tc13 Tul mainly induces immune responses associated with pathology.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, P., Buscaglia, C. A. and Campetella, O. ( 2004). Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences. The Journal of Biological Chemistry 279, 33753381.CrossRefGoogle Scholar
Antunez, M. I. and Cardoni, R. L. ( 2000). IL-12 and IFN-gamma production, and NK cell activity, in acute and chronic experimental Trypanosoma cruzi infections. Immunology Letters. 71, 103109.CrossRefGoogle Scholar
Arnaiz, M. R., Fichera, L. E. and Postan, M. ( 2002). Cardiac myocyte hypertrophy and proliferating cell nuclear antigen expression in Wistar rats infected with Trypanosoma cruzi. Journal of Parasitology 88, 919925.CrossRefGoogle Scholar
Ben Younes-Chennoufi, A., Said, G., Eisen, H., Durand, A. and Hontebeyrie-Joskowicz, M. ( 1988). Cellular immunity to Trypanosoma cruzi is mediated by helper T cells (CD4+). Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 8489.CrossRefGoogle Scholar
Black, C. A. ( 1999). Delayed type hypersensitivity, current theories with an historic perspective. Dermatology Online Journal 5, 7.Google Scholar
Boscardin, S. B., Kinoshita, S. S., Fujimura, A. E. and Rodrigues, M. M. ( 2003). Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infection and Immunity 71, 27442757.CrossRefGoogle Scholar
Bunce, C. and Bell, E. B. ( 1997). CD45RC isoforms define two types of CD4 memory T cells, one of which depends on persisting antigen. The Journal of Experimental Medicine 185, 767776.CrossRefGoogle Scholar
Buscaglia, C. A., Alfonso, J., Campetella, O. and Frasch, A. C. ( 1999). Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood. Blood 93, 20252032.Google Scholar
Campetella, O., Sanchez, D., Cazzulo, J. J. and Frasch, A. C. ( 1992). A superfamily of Trypanosoma cruzi surface antigens. Parasitology Today 8, 378381.CrossRefGoogle Scholar
Carlomagno, M., Leer, G., Esteva, M. I., Hansen, D. and Segura, E. L. ( 1996) Role of protein deficiency on the course of Trypanosoma cruzi infection and on the degree of protection conferred by a flagellar fraction. Journal of Nutrient Immunology 4, 3745.Google Scholar
Chu, R. S., Targoni, O. S., Krieg, A. M., Lehmann, P. V. and Harding, C. V. ( 1997). CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. The Journal of Experimental Medicine 186, 16231631.CrossRefGoogle Scholar
Costa, F., Pereira-Chioccola, V. L., Ribeirao, M., Schenkman, S. and Rodrigues, M. M. ( 1999). Trans-sialidase delivered as a naked DNA vaccine elicits an immunological response similar to a Trypanosoma cruzi infection. Brazilian Journal of Medical and Biological Research 32, 235239.CrossRefGoogle Scholar
Dannenberg, A. M. Jr. ( 1991). Delayed-type hypersensitivity and cell-mediated immunity in the pathogenesis of tuberculosis. Immunology Today 12, 228233.CrossRefGoogle Scholar
Frasch, A. C. ( 2000). Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitology Today 16, 282286.CrossRefGoogle Scholar
Frasch, A. C. ( 1994). Trans-sialidase, SAPA amino acid repeats and the relationship between Trypanosoma cruzi and the mammalian host. Parasitology 108 (Suppl.) S37S44.CrossRefGoogle Scholar
Garcia, G. A., Joensen, L. G., Bua, J., Ainciart, N., Perry, S. J. and Ruiz, A. M. ( 2003). Trypanosoma cruzi, molecular identification and characterization of new members of the Tc13 family. Description of the interaction between the Tc13 antigen from Tulahuen strain and the second extracellular loop of the beta(1)-adrenergic receptor. Experimental Parasitology 103, 112119.Google Scholar
Garg, N. and Tarleton, R. L. ( 2002). Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infection and Immunity 70, 55475555.CrossRefGoogle Scholar
Gomes, Y. M., Abath, F. G., Nakazawa, M., Minoprio, P., Vouldoukis, I. and Monjour, L. ( 1999). Partial protection of mice against Trypanosoma cruzi after immunizing with the TcY 72 antigenic preparation. Memorias do Instituto Oswaldo Cruz 94, 167172.CrossRefGoogle Scholar
Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. ( 2004). Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Medicine 10, 187192.CrossRefGoogle Scholar
Higuchi, M. L., De Morais, C. F., Pereira Barreto, A. C., Lopes, E. A., Stolf, N., Bellotti, G. and Pileggi, F. ( 1987). The role of active myocarditis in the development of heart failure in chronic Chagas' disease, a study based on endomyocardial biopsies. Clinical Cardiology 10, 665670.CrossRefGoogle Scholar
Joensen, L., Borda, E., Kohout, T., Perry, S., Garcia, G. and Sterin-Borda, L. ( 2003). Trypanosoma cruzi antigen that interacts with the beta1-adrenergic receptor and modifies myocardial contractile activity. Molecular and Biochemical Parasitology 127, 169177.CrossRefGoogle Scholar
Kahn, S. J. and Wleklinski, M. ( 1997). The surface glycoproteins of Trypanosoma cruzi encode a superfamily of variant T cell epitopes. The Journal of Immunology 159, 44444451.Google Scholar
Leon, J. S., Wang, K. and Engman, D. M. ( 2003). Myosin autoimmunity is not essential for cardiac inflammation in acute Chagas' disease. The Journal of Immunology 171, 42714277.CrossRefGoogle Scholar
Liew, F. Y., Scott, M. T., Liu, D. S. and Croft, S. L. ( 1987). Suppressive substance produced by T cells from mice chronically infected with Trypanosoma cruzi. I. Preferential inhibition of the induction of delayed-type hypersensitivity. The Journal of Immunology 139, 24522457.Google Scholar
Martin, D. and Tarleton, R. ( 2004). Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunological Reviews 201, 304317.CrossRefGoogle Scholar
Millar, A. E. and Kahn, S. J. ( 2000). The SA85–1.1 protein of the Trypanosoma cruzi trans-sialidase superfamily is a dominant T-cell antigen. Infection and Immunity 68, 35743580.Google Scholar
Mucci, J., Hidalgo, A., Mocetti, E., Argibay, P. F., Leguizamon, M. S. and Campetella, O. ( 2002). Thymocyte depletion in Trypanosoma cruzi infection is mediated by trans-sialidase-induced apoptosis on nurse cells complex. Proceedings of the National Academy of Sciences, USA 99, 38963901.CrossRefGoogle Scholar
Müller, I., Kropf, P., Etges, R. J. and Louis, J. A. ( 1993). Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infection and Immunity 61, 37303738.Google Scholar
Nagata, T., Aoshi, T., Uchijima, M., Suzuki, M. and Koide, Y. ( 2004). Cytotoxic T-lymphocyte-, and helper T-lymphocyte-oriented DNA vaccination. DNA and Cell Biology 23, 93106.CrossRefGoogle Scholar
Nogueira, N. and Cohn, Z. ( 1977). Trypanosoma cruzi: uptake and intracellular fate in normal and activated cells. American Journal of Tropical Medicine and Hygiene 26, 194203.CrossRefGoogle Scholar
Norris, K. A. and Schrimpf, J. E. ( 1994). Biochemical analysis of the membrane and soluble forms of the complement regulatory protein of Trypanosoma cruzi. Infection and Immunity 62, 236243.Google Scholar
Olivetti, G., Capasso, J. M., Meggs, L. G., Sonnenblick, E. H. and Anversa, P. ( 1991). Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circulation Research 68, 856869.CrossRefGoogle Scholar
Postan, M., McDaniel, J. P. and Dvorak, J. A. ( 1984). Studies of Trypanosoma cruzi clones in inbred mice. II. Course of infection of C57BL/6 mice with single-cell-isolated stocks. American Journal of Tropical Medicine and Hygiene 33, 236238.CrossRefGoogle Scholar
Reis, M. M., Higuchi Mde, L. L., Benvenuti, A., Aiello, V. D., Gutierrez, P. S., Bellotti, G. and Pileggi, F. ( 1997). An in situ quantitative immunohistochemical study of cytokines and IL-2R+ in chronic human chagasic myocarditis: correlation with the presence of myocardial Trypanosoma cruzi antigens. Clinical Immunology and Immunopathology 83, 165172.CrossRefGoogle Scholar
Rodrigues, M. M., Ribeirao, M., Pereira-Chioccola, V., Renia, L. and Costa, F. ( 1999). Predominance of CD4 Th1 and CD8 Tc1 cells revealed by characterization of the cellular immune response generated by immunization with a DNA vaccine containing a Trypanosoma cruzi gene. Infection and Immunity 67, 38553863.Google Scholar
Schenkman, S. and Eichinger, D. ( 1993). Trypanosoma cruzi trans-sialidase and cell invasion. Parasitology Today 9, 218222.CrossRefGoogle Scholar
Silverstein, A. M. ( 2002). Whatever happened to cell-bound antibodies? On the overriding influence of dogma. Nature Immunology 3, 105108.CrossRefGoogle Scholar
Souto-Padron, T., Reyes, M. B., Leguizamon, S., Campetella, O. E., Frasch, A. C. and de Souza, W. ( 1989). Trypanosoma cruzi proteins which are antigenic during human infections are located in defined regions of the parasite. European Journal of Cell Biology 50, 272278.Google Scholar
Stan, A. C., Casares, S., Brumeanu, T. D., Klinman, D. M. and Bona, C. A. ( 2001). CpG motifs of DNA vaccines induce the expression of chemokines and MHC class II molecules on myocytes. Eur. The Journal of Immunology 31, 301310.3.0.CO;2-K>CrossRefGoogle Scholar
Sun, J. and Tarleton, R. L. ( 1993). Predominance of CD8+ T lymphocytes in the inflammatory lesions of mice with acute Trypanosoma cruzi infection. American Journal of Tropical Medicine and Hygiene 48, 161169.CrossRefGoogle Scholar
Tarleton, R. L. ( 2001). Parasite persistence in the aetiology of Chagas disease. International Journal for Parasitology 31, 550554.CrossRefGoogle Scholar
Tribulatti, M. V., Mucci, J., Van Rooijen, N., Leguizamon, M. S. and Campetella, O. ( 2005). The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents. Infection and Immunity 73, 201207.CrossRefGoogle Scholar
Whitton, J. L., Rodriguez, F., Zhang, J. and Hassett, D. E. ( 1999). DNA immunization, mechanistic studies. Vaccine 17, 16121619.CrossRefGoogle Scholar
Wizel, B., Garg, N. and Tarleton, R. L. ( 1998). Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infection and Immunity 66, 50735081.Google Scholar
Wizel, B., Nunes, M. and Tarleton, R. L. ( 1997). Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. The Journal of Immunology 159, 61206130.Google Scholar
WORLD HEALTH ORGANIZATION ( 1999). Chagas Disease: Tropical Disease Research Progress 1997–1998. WHO Technical Report Series, No 14. WHO, Geneva.
Zhang, L. and Tarleton, R. L. ( 1996). Characterization of cytokine production in murine Trypanosoma cruzi infection by in situ immunocytochemistry, lack of association between susceptibility and type 2 cytokine production. European Journal of Immunology 26, 102109.CrossRefGoogle Scholar