Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T06:58:39.076Z Has data issue: false hasContentIssue false

Identification of compounds from Paris polyphylla (ChongLou) active against Dactylogyrus intermedius

Published online by Cambridge University Press:  03 April 2013

ZE-HONG LI
Affiliation:
College of Life Sciences, Jilin Agriculture University, Jilin, Changchun 130118, China
JIA-YU WAN
Affiliation:
Institute of Military Veterinary, Academy of Military Medical Science, Changchun 130122, China
GUI-QIN WANG
Affiliation:
College of Life Sciences, Jilin Agriculture University, Jilin, Changchun 130118, China
FU-GUANG ZHAO
Affiliation:
College of Life Sciences, Jilin Agriculture University, Jilin, Changchun 130118, China
JI-HONG WEN*
Affiliation:
Obstetrics and Gynecology Department, The First Hospital of Jilin University, Changchun 130021, China
*
*Corresponding author. Obstetrics and Gynecology Department, The First Hospital of JiLin University, Changchun 130021, China. Fax: +86431-88782182. E-mail: [email protected]

Summary

The present study was designated to ascertain the anthelmintic activity of the rhizomes of Paris polyphylla and to isolate and characterize the active constituents. The methanol extract from rhizomes of P. polyphylla showed significant anthelmintic activity against Dactylogyrus intermedius with the median effective concentration (EC50) 22·5 mg L−1. Based on this finding, the methanol extract was fractionated by silica gel column chromatography in a bioassay-guided fractionation yielding 2 bioactive compounds, the structures of these compounds were elucidated as formosanin C and polyphyllin VII. The in vivo tests revealed that formosanin C and polyphyllin VII were significantly effective against D. intermedius with EC50 values of 0·6 and 1·2 mg L−1, respectively. The acute toxicities (LC50) of formosanin C and polyphyllin VII for grass carp were 2·8 and 2·9 mg L−1, respectively. The overall results provide important information for the potential application of formosanin C and polyphyllin VII in the therapy of serious infection caused by D. intermedius.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bourgaud, F., Gravot, A., Milesi, E. and Gontier, E. (2001). Production of plant secondary metabolites: an historical perspective. Plant Science 161, 839851.CrossRefGoogle Scholar
Buchmann, K., Slotved, H. C. and Dana, D. (1993). Epidemiology of gill parasite infections in Cypirnus carpio in Indonesia and possible control methods. Aquaculture 118, 921.CrossRefGoogle Scholar
Chiang, H. C., Wang, J. J. and Wu, R. T. (1992). Immunomodulating effects of the hydrolysis products of formosanin C and beta-ecdysone from formosana Hayata. Anticancer Research 12, 14751478.Google ScholarPubMed
Chen, C. X. and Zhou, J. (1981). Studies on the saponin components of plants in Yunnan: V. Steroid glycosides and β-ecdysone of Paris polyphylla SM. var. Yunnanensis (FR.) H-M. Acta Botanica Yunnanica 3, 8993.Google Scholar
Chen, C. X., Zhang, Y. T. and Zhou, J. (1983). Studies on the saponin components of plants in Yunnan: VI. Steroid glycosides of Paris polyphylla SM. var. Yunnanensis (FR.) H-M (2). Acta Botanica Yunnanica 5, 9197.Google Scholar
Desagher, S. and Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology 10, 369–77.CrossRefGoogle ScholarPubMed
Dove, A. and Ernst, I. (1998). Concurrent invaders – four exotic species of Monogenea now established on exotic freshwater fishes in Australia. International Journal for Parasitology 28, 17551764.CrossRefGoogle ScholarPubMed
Huang, C. Y., Chou, K. Y. and Chang, H. C. (1990). Metabolism of formosanin-C by cytochrome P-450. European Journal of Pharmacology 183, 1360.CrossRefGoogle Scholar
Huang, Q. A., Qiao, F., Lu, J. and Lin, R. C. (2007). Studies on the separation and quantity determination of saponins of Rhizoma Paridis. Chinese Pharmaceutical Affairs 21, 591593.Google Scholar
İsmail, K. I. R. and Selda, T. Ö. (2007). Helminth infections in common carp, Cyprinus Carpio L., 1958 (Cyprinidae) from Kovada Lake (Turkey). Türkiye Parazitoloji Dergisi 31, 232236 (in German with English abstract).Google Scholar
Lee, J. C., Su, C. L., Chen, L. L. and Won, S. J. (2009). Formosanin C-induced apoptosis requires activation of caspase-2 and change of mitochondrial membrane potential. Cancer 100, 503513.Google ScholarPubMed
Li, X. L., Yao, J. Y., Zhou, Z. M., Shen, J. Y., Ru, H. S. and Liu, X. L. (2011). Activity of the chelerythrine, a quaternary benzo[c]phenanthridine alkaloid from Chelidonium majus L. on Dactylogyrus intermedius. Parasitology Research 109, 247252.CrossRefGoogle Scholar
Liu, Y. T., Wang, F., Wang, G. X., Han, J., Wang, Y. and Wang, Y. H. (2010). In vivo anthelmintic activity of crude extracts of Radix angelicae pubescentis, Fructus bruceae, Caulis spatholobi, Semen aesculi, and Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitology Research 106, 12331239.CrossRefGoogle ScholarPubMed
Marshall, C. J. (1999). Use of Supaverm® for the treatment of monogenean infestation in koi carp (Cyprinus carpio). Fish Veterinary Journal 4, 3337.Google Scholar
Reed, P. A., Francis, F. R. and Klinger, R. C. (2009). FA28/FA033: Monogenean parasites of fish. EDIS-Electronic Data Information Source-UF/IFAS Extension. University of Florida. http://edis.ifas.ufl.edu/FA033. 17 May 2009.Google Scholar
Saraste, A. (1999). Morphologic criteria and detection of apoptosis. Herz 24, 189–95.CrossRefGoogle ScholarPubMed
Schmahl, G. and Mehlhorn, H. (1985). Treatment of fish parasites: 1. Praziquantel effective against Monogenea (Dactylogyrus vastator, Dactylogyrus extensus, Diplozoon paradoxum). Zeitschrift für Parasitenkunde 71, 727737.CrossRefGoogle ScholarPubMed
Schmahl, G. and Mehlhorn, H. (1988). Treatment of fish parasites: 4. Effects of symtriazinone (toltrazuril) on monogenea. Parasitology Research 75, 132143.CrossRefGoogle ScholarPubMed
Tagboto, S. and Townson, S. (2001). Antiparasitic properties of medicinal plants and other naturally occurring products. Advances in Parasitology 50, 199295.CrossRefGoogle ScholarPubMed
Topić, P. N., Hacmanjek, M. and Teskeredžić, E. (2001). Health status of rudd (Scardinius erythrophthalmus hesperidicus H.) in Lake Vrana on the Island of Cres, Croatia. Journal of Applied Ichthyology 17, 4345.CrossRefGoogle Scholar
Treves-Brown, K. M. (1999). Availability of medicines for fish. Fish Veterinary Journal 4, 4055.Google Scholar
Wang, G. X., Chen, C., Cheng, L. A. and Zhang, X. (2006). Study on killing activities of 22 plants and 6 plant compounds to the Dactylogyrus. Acta Botanica Boreal-Occident Sinica 26, 25672573. (in Chinese with English abstract).Google Scholar
Wang, G. X., Zhou, Z., Cheng, C., Yao, J. Y. and Yang, Z. W. (2008). Osthol and isopimpinellin from Fructus cnidii for the control of Dactylogyrus intermedius in Carassius auratus. Veterinary Parasitology 158, 144151.CrossRefGoogle ScholarPubMed
Wu, R. T., Chang, H. C., Fu, W. C., Chen, K. Y., Chung, Y. M. and Horng, L. Y. (1990). Formosanin-C, an immunomodulator with antitumor activity. International Journal of Immunopharmacology 12, 777–86.Google ScholarPubMed
Yao, J. Y., Li, X. L., Shen, J. Y., Pan, X. Y., Hao, G. J., Xu, Y., Yin, W. L., Ru, H. S. and Liu, X. L. (2011). Isolation of bioactive components from Chelidonium majus L. with activity against Trichodina sp. Aquaculture 318, 235238.CrossRefGoogle Scholar