Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T20:21:40.187Z Has data issue: false hasContentIssue false

Hypoxanthine: a low molecular weight factor essential for growth of erythrocytic Plasmodium falciparum in a serum-free medium

Published online by Cambridge University Press:  06 April 2009

H. Asahi*
Affiliation:
Department of Parasitology, National Institute of Health, 23-1, Toyama 1-chome, Shinjuku-ku, Tokyo 162, Japan
T. Kanazawa
Affiliation:
Department of Parasitology, National Institute of Health, 23-1, Toyama 1-chome, Shinjuku-ku, Tokyo 162, Japan
Y. Kajihara
Affiliation:
Life Tech Division, Nihon Pharmaceutical Co. Ltd, Sumiyoshi-cho 26, Izumisano, Osaka 598, Japan
K. Takahashi
Affiliation:
Life Tech Division, Nihon Pharmaceutical Co. Ltd, Sumiyoshi-cho 26, Izumisano, Osaka 598, Japan
T. Takahashi
Affiliation:
Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan
*
*Corresponding author. Tel: +3 5285 1111. Fax: +3 5285 1150.

Summary

A low molecular weight factor in a basal medium essential for erythrocytic Plasmodium falciparum development in a serum-free medium using a cell growth-promoting factor derived from adult bovine serum was detected. The factor was hypoxanthine. The optimal hypoxanthine concentration for parasite growth was between 15 and 120 μM. The contribution of hypoxanthine to increased parasite growth was clearly evident in cultures on day 4. Among various low molecular weight supplements tested, adenine, adenosine, AMP, ATP, cyclic AMP, guanine, guanosine, inosine, inosine mono-phosphate, xanthine, NAD, NADH, NADP, NADPH and deoxyguanosine triphosphate showed a similar effect to that of hypoxanthine in the serum-free culture system. On the other hand, the addition of uric acid, FAD, thymidine, uridine, orotic acid, deoxythymidine triphosphate, deoxycytidine triphosphate, deoxyadenosine triphosphate, ribose-1-phosphate, or ethanolamine was not beneficial to the parasite growth. The results presented here will not only be of practical value, but will provide important information about the developmental requirements of the parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asahi, H. & Kanazawa, T. (1994). Continuous cultivation of intraerythrocytic Plasmodium falciparum in a serum-free medium with the use of a growth-promoting factor. Parasitology 109, 397401.CrossRefGoogle Scholar
Chanock, R. M. & Sabin, A. B. (1953). The hemagglutinin of St. Louis encephalitis virus. I. Recovery of stable hemagglutinin from the brains of infected mice. Journal of Immunology 70, 271–85.CrossRefGoogle ScholarPubMed
Divo, A. A. & Jensen, J. B. (1982). Studies on serum requirements for the cultivation of Plasmodium falciparum. 2. Medium enrichment. Bulletin of the World Health Organization 60, 571–5.Google ScholarPubMed
Divo, A. A., Vande, Waa J. A., Campbell, J. R. & Jensen, J. B. (1985). Isolation and cultivation of Plasmodium falciparum using adult bovine serum. Journal of Parasitology 71, 504–9.CrossRefGoogle ScholarPubMed
Elabbadi, N., Ancelin, M. L. & Vial, H. J. (1992). Use of radioactive ethanolamine incorporation into phospholipids to assess in vitro antimalarial activity by the semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy 36, 50–5.CrossRefGoogle ScholarPubMed
Gero, A. M. & O'Sullivan, W. J. (1990). Purines and pyrimidines in malarial parasites. Blood Cells 16, 467–84.Google ScholarPubMed
Grellier, P., Rigomier, D., Clavey, V., Fruchart, J.-C. & Schrevel, J. (1991). Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells. Journal of Cell Biology 112, 267–77.CrossRefGoogle ScholarPubMed
Gutteridge, W. E. & Trigg, P. I. (1970). Incorporation of radioactive precursors into DNA and RNA of Plasmodium knowlesi in vitro. Journal of Protozoology 17, 8996.CrossRefGoogle ScholarPubMed
Japanese Patent (1985). Number Syo60–145088.Google Scholar
Kudo, T., Morishita, R., Suzuki, (Seno) R. & Tachibana, T. (1987). A great improvement of fusion efficiency in mouse B cell hybridoma production by use of the new culture medium, GIT. Tohoku Journal of Experimental Medicine 153, 5566.CrossRefGoogle ScholarPubMed
Kugler, G. (1978). A column chromatographic method for determination of plasma and erythrocyte levels of inosine and hypoxanthine. Analytical Biochemistry 90, 204–10.CrossRefGoogle ScholarPubMed
Lingnau, A., Margos, G., Maier, W. A. & Seitz, H. M. (1993). Serum-free cultivation of Plasmodium falciparum gametocytes in vitro. Parasitology Research 79, 378–84.CrossRefGoogle ScholarPubMed
Ofulla, A. V. O., Okoye, V. C. N., Khan, B., Githure, J. I., Roberts, C. R., Johnson, A. J. & Martin, S. K. (1993). Cultivation of Plasmodium falciparum parasites in a serum-free medium. American Journal of Tropical Medicine and Hygiene 49, 335–40.CrossRefGoogle Scholar
Reyes, P., Rathod, P. K., Sanchez, D. J., Mrema, J. E. K., Rieckmann, K. H. & Heidrich, H-G. (1982). Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Molecular and Biochemical Parasitology 5, 275–90.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1977). Transport of amino acids and nucleic acid precursors in malarial parasites. Bulletin of the World Health Organization 55, 211–25.Google ScholarPubMed
Sherman, I. W. (1979). Biochemistry of Plasmodium (malarial parasites). Microbiological Reviews 43, 453–95.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
Webster, H. K. & Whaun, J. M. (1981). Purine metabolism during continuous erythrocytes culture of human malaria parasites (P. falciparum). Progress in Clinical and Biological Research 55, 557–73.Google ScholarPubMed
Zolg, J. W., Macleod, A. J., Dickson, I.H. & Scaife, J. G. (1982). Plasmodium falciparum: modifications of the in vitro culture conditions improving parasite yields. Journal of Parasitology 68, 1072–80.CrossRefGoogle ScholarPubMed