Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T11:44:59.713Z Has data issue: false hasContentIssue false

Hymenolepis diminuta (Cestoda) liberates an inhibitor of proteolytic enzymes during in vitro incubation

Published online by Cambridge University Press:  06 April 2009

P. W. Pappas
Affiliation:
Department of Zoology, The Ohio State University, Columbus, OH 43210, USA
G. L. Uglem
Affiliation:
School of Biological Sciences, University of Kentucky, Lexington, KY 40506, USA

Summary

Hymenolepis diminuta liberated measurable amounts of ‘Lowry-positive material’ (LPM) and protein during incubation for 2 h in vitro. When tapeworms were incubated in the presence of bovine trypsin (BT), or when BT was added to the medium after removing the tapeworms, the enzyme's proteolytic activity was inhibited significantly. Centrifugation of the medium at 30 000 g yielded a pellet composed of tegumental elements, but this fraction did not inhibit BT. The 30 000 g supernatant fraction contained a chemical(s) that inhibited the proteolytic enzymes of the rodent host's intestinal contents (IC). The inhibitor(s) was stable following repeated freeze-thaw cycles, heat labile, and not degraded by BT or IC, and it inhibited the amidase activity of BT in a non-competitive manner.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Knowles, W. J. & Oaks, J. A. (1979). Isolation and partial biochemical characterization of the brush border plasma membrane from the cestode, Hymenolepis diminuta. Journal of Parasitology 65, 715–31.CrossRefGoogle ScholarPubMed
Kuo, M. (1979). Hydrolysis and transport of nucleotides by Hymenolepis diminuta. Journal of the Chinese Society of Veterinary Science 5, 918.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Markwell, M. A. K., Haas, S. M., Bieber, L. L. & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87, 206–10.CrossRefGoogle ScholarPubMed
Mettrick, D. F. (1971 a). Effect of host dietary constituents on intestinal pH and the migratory behavior of the rat tapeworm Hymenolepis diminuta. Canadian Journal of Zoology 49, 1513–25.CrossRefGoogle Scholar
Mettrick, D. F. (1971 b). Hymenolepis diminuta: pH changes in rat intestinal contents and worm migration. Experimental Parasitology 29, 386401.CrossRefGoogle ScholarPubMed
Mettrick, D. F. & Podesta, R. B. (1974). Ecological and physiological aspects of helminth-host interactions in the mammalian gastrointestinal canal. In Advances in Parasitology, Vol. 12 (ed. Dawes, B.), pp. 183278. New York: Academic Press.Google Scholar
Oaks, J. A. & Lumsden, R. D. (1971). Cytological studies on the absorptive surfaces of cestodes. V. Incorporation of carbohydrate containing macromolecules into tegument membranes. Journal of Parasitology 57, 1256–68.CrossRefGoogle ScholarPubMed
Pappas, P. W. (1978). Tryptic and protease activities in the normal and Hymenolepis diminuta-infected rat small intestine. Journal of Parasitology 64, 562–4.CrossRefGoogle ScholarPubMed
Pappas, P. W. (1987). Hymenolepis diminuta: interactions of the isolated brush border membrane with proteolytic enzymes. Experimental Parasitology 64, 3847.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Leiby, D. A. (1986). Variation in the sizes of eggs and oncospheres and the numbers and distributions of testes in the tapeworm, Hymenolepis diminuta. Journal of Parasitology 72, 383–91.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Read, C. P. (1972 a). Trypsin inactivation by intact Hymenolepis diminuta. Journal of Parasitology 72, 383–91.CrossRefGoogle Scholar
Pappas, P. W. & Read, C. P. (1972 b). Inactivation of α and β-chymotrypsin by intact Hymenolepis diminuta (Cestoda). Biological Bulletin 143, 605–16.CrossRefGoogle Scholar
Read, C. P., Rothman, A. H. & Simmons, J. E. J.. (1963). Studies on membrane transport, with special reference to parasite-host integration. Annals of the New York Academy of Sciences 113, 154205.CrossRefGoogle ScholarPubMed
Roberts, L. S. (1983). Carbohydrate metabolism. In Biology of the Eucestoda, Vol. 2 (ed. Arme, C. & Pappas, P. W.), pp. 343390. New York: Academic Press.Google Scholar
Schroeder, L. L., Pappas, P. W. & Means, G. E. (1981). Trypsin inactivation by intact Hymenolepis diminuta (Cestoda): some characteristics of inactivated enzyme. Journal of Parasitology 67, 378–85.CrossRefGoogle ScholarPubMed
Thomas, J. N. & Turner, S. G. (1980). A reinterpretation of the evidence for contact digestion in the tapeworm, Hymenolepis diminuta. Journal of Physiology 301, 79P–80P.Google Scholar
Uglem, G. L. & Just, J. J. (1983). Trypsin inhibition by tapeworms: antienzyme secretion or pH adjustment? Science 220, 7981.CrossRefGoogle ScholarPubMed
Weinland, E. (1903). Über Antifermente. Zeitschrift für Biologie 44, 115.Google Scholar