Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T19:41:23.177Z Has data issue: false hasContentIssue false

Host-parasite interactions and global climate oscillations

Published online by Cambridge University Press:  18 May 2011

HIDEYUKI DOI*
Affiliation:
Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
NATALIA I. YURLOVA
Affiliation:
Institute Systematic and Ecology of Animals, Siberian Branch of Russian Academy Sciences, Frunze Street 11, Novosibirsk, 630091, Russia
*
*Corresponding author: Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany. Tel: +49 4421 944 102. Fax: +49 4421 944 140. E-mail: [email protected]

Summary

It is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982–1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blenckner, T. and Hillebrand, H. (2002). North Atlantic Oscillation signatures in aquatic and terrestrial ecosystems- a meta-analysis. Global Change Biology 8, 203212.CrossRefGoogle Scholar
Chiba, S., Tadokoro, K., Sugisaki, H. and Saino, T. (2006). Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Global Change Biology 12, 907920.CrossRefGoogle Scholar
Filimonova, L. V. and Shalyapina, B. I. (1975). Trematoda parasite of waterfowl of North Kulunda. In Parasite of Waterfowl of North Kulunda, Nauka (Siberian Branch) (ed. Rizhikov, K. M. and Folitarek, S. S.), pp. 3552. Novosibirsk, Russia. [In Russian.]Google Scholar
Gordo, O. (2007). Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Climate Research 35, 3758.CrossRefGoogle Scholar
Gordo, O. and Sanz, J. J. (2005). Phenology and climate change: a long–term study in a Mediterranean locality. Oecologia 146, 484495.CrossRefGoogle Scholar
Gutiérrez, A., Yong, M., Perera, G., Sánchez, J. and Théron, A. (2002). Fasciola hepatica (Trematoda: Digenea): its effect on the life history traits of Pseudosuccinea columella (Gasteropoda: Lymnaeidae), an uncommon interaction. Parasitological Research 88, 535539.CrossRefGoogle ScholarPubMed
Hechinger, R. F. and Lafferty, K. D. (2005). Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society of London, B 272, 10591066.Google ScholarPubMed
Hurrell, J. W. (1995). Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676679.CrossRefGoogle ScholarPubMed
Hurrell, J. W., Kushnir, Y. and Visbeck, M. (2001). The North Atlantic Oscillation. Science 291, 603605.CrossRefGoogle ScholarPubMed
Hurrell, J. W. and Van Loon, H. (1997). Decadal variation in climate associated with the North Atlantic oscillation. Climate Change 36, 301326.CrossRefGoogle Scholar
Ippolitov, I. I., Kabanov, M. V. and Loginov, S. V. (2007). Spatiotemporal scales of warming observed in Siberia. Doklary Earth Science 412, 814817.Google Scholar
Kitaev, L. M. and Kislov, A. V. (2007). Modern and future tendencies of snow accumulation variations over Northern Europe. Proceedings of the Second International Conference of Earth System Modelling, Hamburg, Germany, pp. 215218.Google Scholar
Kuris, A. M., Hechinger, R. F., Shaw, J. C., Whitney, K. L., Aguirre-Macedo, L., Boch, C. A., Dobson, A. P., Dunham, E. J., Fredensborg, B. L., Huspeni, T. C., Lorda, J., Mababa, L., Mancini, F. T., Mora, A. B., Pickering, M., Talhouk, N. L., Torchin, M. E. and Lafferty, K. D. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, London 454, 515518.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., DeLeo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T. J., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R. and Thieltges, D. W. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533546.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Dobson, A. P. and Kuris, A. M. (2006). Parasites dominate food web links. Proceedings of the National Academy of Sciences, USA 103, 1121111216.CrossRefGoogle ScholarPubMed
Marra, P. P., Francis, C. M., Mulvihill, R. S. and Moore, F. S. (2005). The influence of climate on the timing and rate of spring bird migration. Oecologia 142, 307315.CrossRefGoogle ScholarPubMed
McCarthy, A. M. (1999). The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383388.CrossRefGoogle ScholarPubMed
Mouritsen, K. N. and Poulin, R. (2002). Parasitism, climate oscillations and the structure of natural communities. Oikos 97, 462468.CrossRefGoogle Scholar
Negovetich, N. I. and Esch, G. W. (2008). Quantitative estimation of the cost of parasitic castration in a Helisoma anceps population using a matrix population model. Journal of Parasitology 94, 10221030.CrossRefGoogle Scholar
Nott, M. P., DeSante, D. F., Siegel, R. B. and Pyle, P. (2002). Influences of the El Niño/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the Pacific Northwest of North America. Global Ecology Biogeography 11, 333342.CrossRefGoogle Scholar
Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C. and Stenseth, N. C. (2001). Ecological effects of the North Atlantic oscillation. Oecologia 128, 114.CrossRefGoogle ScholarPubMed
Post, E. and Stenseth, N. C. (1999). Climatic variability, plant phenology, and northern ungulates. Ecology 80, 13221339.CrossRefGoogle Scholar
R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Schindler, D. E., Rogers, D. R., Scheuerell, M. D. and Abrey, C. A. (2005). Effects of changing climate on zooplankton and growth of juvenile sockeye salmon in southwestern Alaska. Ecology 86, 198209.CrossRefGoogle Scholar
Sorensen, R. E. and Minchella, D. J. (2001). Snail-trematode life history interactions past trends and directions. Parasitology 123, S3S18.CrossRefGoogle Scholar
Stenseth, N. C., Ottersen, G., Hurrell, J. W., Mysterud, A., Lima, M., Chan, K-S., Yoccoz, N. G. and Adlandsvik, B. (2003). Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings of the Royal Society of London, B 270, 20872096.CrossRefGoogle ScholarPubMed
Straile, D. (2002). North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proceedings of the Royal Society of London, B 269, 391395.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K. (2010). Food webs for parasitologists: a review. Journal of Parasitology 96, 273284.CrossRefGoogle ScholarPubMed
Vaganov, E. A., Briffa, K. R., Naurzbaev, M. M., Schweingruber, F. H., Shiyatov, S. G. and Shishov, V. V. (2000). Long-term climatic changes in the Arctic region of the Northern Hemisphere. Doklary Earth Science 375, 13141317.Google Scholar
Veen, J., Yurlov, A. K., Delany, S. N., Mihantiev, A. I., Selivanova, M. A. and Boere, G. C. (2005). An Atlas of Movements of Southwest Siberian Waterbirds. Wetlands International, Wageningen, The Netherlands.Google Scholar
Yurlov, K. T. (1981). Species composition of birds and their habitat distribution in Barabinskaya Lowland (Western Siberia). In Ecology and Biocoenotical Connections of Migratory Birds in West Siberia, Nauka (Siberian Branch) (ed. Yurlov, K. T.), pp. 529. Novosibirsk, Russia. [In Russian.]Google Scholar
Yurlova, N. I. (2003). The influence of trematode infections on reproductive potential of natural Lymnaea stagnalis population (Gastropoda, Lymnaeidae). Zoologichesky zhurnal 82, 10271037. [In Russian.]Google Scholar
Yurlova, N. I., Vodyanizkaya, S. N. and Glupov, V. V. (2000). The analyses of host-parasite interactions in snail-trematode system. Uspechi of Modern Biology 120, 573580. [In Russian, abstract in English.]Google Scholar
Yurlova, N. I., Vodyanitskaya, S. N., Serbina, E. A., Biserkov, V. Y., Georgiev, B. B. and Chipev, N. H. (2006). Temporal variation in prevalence and abundance of metacercariae in the pulmonate snail Lymnaea stagnalis in Chany Lake, West Siearia, Russia: Long-term patterns and environmental covariates. Journal of Parasitology 92, 249259.CrossRefGoogle ScholarPubMed
Žalakevičius, M., Bartkevičiene, G., Raudonikis, L. and Janulaitis, J. (2006). Spring arrival response to climate change in birds: a case study from eastern Europe. European Journal of Ornithology 147, 326343.CrossRefGoogle Scholar
Supplementary material: File

Doi Supplementary Material

Doi Supplementary Material

Download Doi Supplementary Material(File)
File 39.4 KB