Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T15:05:07.408Z Has data issue: false hasContentIssue false

A high prevalence of mixed trypanosome infections in tsetse flies in Sinfra, Côte d'Ivoire, detected by DNA amplification

Published online by Cambridge University Press:  06 April 2009

D. K. Masiga
Affiliation:
Department of Pathology and Microbiology, School of Veterinary Science, University of Bristol, Longford House, Bristol BS18 7DY, UK
J. J. McNamara
Affiliation:
Department of Clinical Veterinary Science, University of Bristol, Longford House, Bristol BS18 7D Y, UK
C. Laveissière
Affiliation:
Institut Pierre Richet/OCCGE, BP 1500, Bouaké, Côte d'Ivoire
P. Truc
Affiliation:
Institut Pierre Richet/OCCGE, BP 1500, Bouaké, Côte d'Ivoire
W. C. Gibson
Affiliation:
Department of Pathology and Microbiology, School of Veterinary Science, University of Bristol, Longford House, Bristol BS18 7DY, UK

Summary

The prevalence of various species and subgroups of trypanosomes in the Sinfra area of C⊚te d'Ivoire was determined using the polymerase chain reaction (PCR). Using this technique to amplify specific satellite DNA targets, it was possible to identify developmental-stage trypanosomes in the midguts and the proboscides of tsetse without expansion of parasite populations. The predominant tsetse species in the area was Glossina palpalis, while G. pallicera and G. nigrofusca were also present. Microscopical examination of 811 non-teneral flies revealed an infection rate of 14% in midguts and/or proboscides. Three subgroups of Trypanosoma congolense (Savannah, Forest & Kilifi), T. simiae, T.godfreyi, West African T. vivax and T. brucei ssp. were identified using PCR. T. congolense Forest was the most abundant of the Nannomonas trypanosomes. Approximately 40% of all infections were mixed, and there was a significantly higher prevalence of apparently mature T. brucei ssp. trypanosomes than has previously been reported. The present study demonstrates that PCR facilitates the easy identification of mature trypanosome infections in tsetse, providing a reliable estimation of trypanosomiasis challenge.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buxton, P. A. (1955). The natural history of tsetse flies. Memoirs of the London School of Hygiene and Tropical Medicine, No. 10. London: H. K. Lewis.Google Scholar
Dukes, P., McNamara, J. J. & Godfrey, D. G. (1991). Elusive trypanosomes. Annals of Tropical Medicine and Parasitology 85, 2132.CrossRefGoogle ScholarPubMed
Gashumba, J. K., Baker, R. D. & Godfrey, D. G. (1988). Trypanosoma congolense: the distribution of enzymic variants in East and West Africa. Parasitology 96, 475–86.CrossRefGoogle ScholarPubMed
Gibson, W. C., Dukes, P. & Gashumba, J. K. (1988). Species-specific DNA probes for the identification of African trypanosomes in tsetse flies. Parasitology 97, 6373.CrossRefGoogle ScholarPubMed
Hervouët, J. P. & Laveissière, C. (1987). Ecologie humaine et maladie du sommeil en Côte d'Ivoire forestière. ORSTOM, Série Entomologie Médicale et Parasitologie, numéro spécial, 101–11.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals – A Zoological Monograph. Oxford: Blackwell Scientific Publications.Google Scholar
Jordan, A. M. (1964). Trypanosome infection rates in Glossina morsitans submorsitans Newst. in Northern Nigeria. Bulletin of Entomological Research 55, 219–31.CrossRefGoogle Scholar
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K. & Ole Moiyoi, O. (1987). Use of species-specific DNA probes for detection and amplification of trypanosome infection in tsetse flies. Parasitology 95, 116.CrossRefGoogle Scholar
Laveissière, C. & Grébaut, P. (1990). Recherches sur les pièges à glossines (Diptera: Glossinidae). Mise au point d'un modèle économique: le piège ‘Vavoua’. Tropical Medicine and Parasitology 41, 185–92.Google ScholarPubMed
Lloyd, L. & Johnson, W. B. (1924). The trypanosome infections of tsetse flies in Northern Nigeria and a new method of estimation. Bulletin of Entomological Research 14, 256–88.CrossRefGoogle Scholar
Majiwa, P. A. O., Maina, M., Waitumbi, J. N., Mihok, S. & Zweygarth, E. (1993). Trypanosoma (Nannomonas) congolense: molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106, 151–62.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O. & Otieno, L. H. (1990). Recombinant DNA probes reveal simultaneous infection of tsetse flies with different trypanosome species. Molecular and Biochemical Parasitology 40, 245–54.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Thatthi, R., Moloo, S. K., Nyeko, J. H. P., Otieno, L. H. & Maloo, S. (1994). Detection of trypanosome infections in the saliva of tsetse flies and buffy-coat samples from antigenaemic but aparasitaemic cattle. Parasitology 108, 313–22.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor.Google Scholar
Masiga, D. K. (1994). The development and application of the polymerase chain reaction methodology for the identification of African trypanosomes. Ph.D. thesis, University of Bristol.Google Scholar
Masiga, D. K., Smyth, A. J., Hayes, P., Bromidge, T. J. & Gibson, W. C. (1992). Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal for Parasitology 22, 909–18.CrossRefGoogle ScholarPubMed
McNamara, J. J., Laveissière, C. & Masiga, D. K. (1995). Multiple trypanosome infections in wild tsetse detected by PCR analysis and DNA probes. Acta Tropica 59, 8592.CrossRefGoogle ScholarPubMed
McNamara, J. J., Mohammed, G. & Gibson, W. C. (1994). Trypanosoma (Nannomonas) godfreyi sp. nov. from tsetse flies in The Gambia: biological and biochemical characterization. Parasitology 109, 497509.CrossRefGoogle ScholarPubMed
Mehlitz, D., Brinkmann, U. & Haller, L. (1981). Epidemiological studies on the animal reservoir of gambiense sleeping sickness. Part I. Review of literature and description of study areas. Tropenmedizin und Parasitologie 32, 129–33.Google ScholarPubMed
Moloo, K. & Gray, M. A. (1989). New observations on cyclical development of Trypanosoma vivax in Glossina. Acta Tropica 46, 167–72.CrossRefGoogle ScholarPubMed
Mullis, K. B. & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155, 335–50.CrossRefGoogle Scholar
Nekpeni, E. B., Eouzan, J. P. & Dagnogo, M. (1991). Infection of Glossina palpalis palpalis (Diptera, Glossinidae) by trypanosomes in the forest zone of Gagnoa in the Ivory Coast. Tropical Medicine and Parasitology 42, 399403.Google ScholarPubMed
Nyeko, J. H. P., Ole-moiyoi, O. K. & Majiwa, P. A. O. (1990). Characterization of trypanosome isolates from cattle in Uganda using species-specific DNA probes reveals predominance of mixed infections. Insect Science and Applications 11, 271–80.Google Scholar
Roberts, L. W., Wellde, B. T., Reardon, M. J. & Onyango, F. K. (1989). Mechanical transmission of Trypanosoma brucei rhodesiense by Glossina morsitans morsitans (Diptera: Glossinidae). Annals of Tropical Medicine and Parasitology 83, 127–31.CrossRefGoogle ScholarPubMed
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K., Horn, G. T., Erlich, H. A. & Arnheim, N. (1985). Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230, 1350–4.CrossRefGoogle Scholar
Sturm, N. R., Degrave, W., Morel, C. & Simpson, L. (1989). Sensitive detection and schizodeme classification of Trypanosoma cruzi cells by amplification of kinetoplast DNA minicircle sequences: use in diagnosis of Chagas disease. Molecular and Biochemical Parasitology 33, 205–14.CrossRefGoogle ScholarPubMed
Woolhouse, M. E. J., Hargrove, J. W. & McNamara, J. J. (1993). Epidemiology of trypanosome infections of the tsetse-fly Glossina pallidipes in the Zambezi valley. Parasitology 106, 479–85.CrossRefGoogle ScholarPubMed