Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T13:59:25.446Z Has data issue: false hasContentIssue false

Functional characterization of SjB10, an intracellular serpin from Schistosoma japonicum

Published online by Cambridge University Press:  19 August 2014

ADEBAYO J. MOLEHIN*
Affiliation:
Molecular Parasitology Laboratory, Department of Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Australia 4006 School of Population Health, The University of Queensland, 300 Herston Road, Herston, Australia 4006
GEOFFREY N. GOBERT
Affiliation:
Molecular Parasitology Laboratory, Department of Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Australia 4006
PATRICK DRIGUEZ
Affiliation:
Molecular Parasitology Laboratory, Department of Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Australia 4006
DONALD P. MCMANUS
Affiliation:
Molecular Parasitology Laboratory, Department of Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Australia 4006
*
* Corresponding author: Molecular Parasitology Laboratory, Department of Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, Australia 4006. E-mail: [email protected]; [email protected]

Summary

Serine protease inhibitors (serpin) play essential roles in many organisms. Mammalian serpins regulate the blood coagulation, fibrinolysis, inflammation and complement activation pathways. In parasitic helminths, serpins are less well characterized, but may also be involved in evasion of the host immune response. In this study, a Schistosoma japonicum serpin (SjB10), containing a 1212 bp open reading frame (ORF), was cloned, expressed and functionally characterized. Sequence analysis, comparative modelling and structural-based alignment revealed that SjB10 contains the essential structural motifs and consensus secondary structures of inhibitory serpins. Transcriptional profiling demonstrated that SjB10 is expressed in adult males, schistosomula and eggs but particularly in the cercariae, suggesting a possible role in cercarial penetration of mammalian host skin. Recombinant SjB10 (rSjB10) inhibited pancreatic elastase (PE) in a dose-dependent manner. rSjB10 was recognized strongly by experimentally infected rat sera indicating that native SjB10 is released into host tissue and induces an immune response. By immunochemistry, SjB10 localized in the S. japonicum adult foregut and extra-embryonic layer of the egg. This study provides a comprehensive demonstration of sequence and structural-based analysis of a functional S. japonicum serpin. Furthermore, our findings suggest that SjB10 may be associated with important functional roles in S. japonicum particularly in host-parasite interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Anisimova, M. and Gascuel, O. (2006). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systems Biology 55, 539552.CrossRefGoogle Scholar
Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195201.CrossRefGoogle ScholarPubMed
Ashton, P. D., Harrop, R., Shah, B. and Wilson, R. A. (2001). The schistosome egg: development and secretions. Parasitology 122, 329338.CrossRefGoogle ScholarPubMed
Benkert, P., Kunzli, M. and Schwede, T. (2009 a). QMEAN server for protein model quality estimation. Nucleic Acids Research 37, W510W514.CrossRefGoogle ScholarPubMed
Benkert, P., Schwede, T. and Tosatto, S. C. (2009 b). QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC Structural Biology 9, 35.CrossRefGoogle ScholarPubMed
Biro, A., Herincs, Z., Fellinger, E., Szilagyi, L., Barad, Z., Gergely, J., Graf, L. and Sarmay, G. (2003). Characterization of a trypsin-like serine protease of activated B cells mediating the cleavage of surface proteins. Biochimica et Biophysica Acta 1624, 6069.CrossRefGoogle ScholarPubMed
Bjellqvist, B., Hughes, G. J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J. C., Frutiger, S. and Hochstrasser, D. (1993). The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14, 10231031.CrossRefGoogle ScholarPubMed
Blanton, R. E., Licate, L. S. and Aman, R. A. (1994). Characterization of a native and recombinant Schistosoma haematobium serine protease inhibitor gene product. Molecular and Biochemical Parasitology 63, 111.CrossRefGoogle ScholarPubMed
Bollen, A., Herzog, A., Cravador, A., Herion, P., Chuchana, P., Vander Straten, A., Loriau, R., Jacobs, P. and van Elsen, A. (1983). Cloning and expression in Escherichia coli of full-length complementary DNA coding for human alpha 1-antitrypsin. DNA 2, 255264.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Carrell, R. W. and Owen, M. C. (1985). Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317, 730732.CrossRefGoogle ScholarPubMed
Carugo, O. and Pongor, S. (2001). A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Science 10, 14701473.CrossRefGoogle ScholarPubMed
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.CrossRefGoogle ScholarPubMed
Chai, M., McManus, D. P., McInnes, R., Moertel, L., Tran, M., Loukas, A., Jonesa, M. K. and Gobert, G. N. (2006). Transcriptome profiling of lung schistosomula, in vitro cultured schistosomula and adult Schistosoma japonicum . Cellular and Molecular Life Sciences 63, 919929.CrossRefGoogle ScholarPubMed
Chevenet, F., Brun, C., Banuls, A. L., Jacq, B. and Christen, R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439.CrossRefGoogle ScholarPubMed
Chopin, V., Matias, I., Stefano, G. B. and Salzet, M. (1998). Amino acid sequence determination and biological activity of therin, a naturally occuring specific trypsin inhibitor from the leech Theromyzon tessulatum . European Journal of Biochemistry 254, 565570.CrossRefGoogle ScholarPubMed
Congote, L. F. (2007). Serpin A1 and CD91 as host instruments against HIV-1 infection: are extracellular antiviral peptides acting as intracellular messengers? Virus Research 125, 119134.CrossRefGoogle ScholarPubMed
Dalton, J. P., Day, S. R., Drew, A. C. and Brindley, P. J. (1997). A method for the isolation of schistosome eggs and miracidia free of contaminating host tissues. Parasitology 115, 2932.CrossRefGoogle ScholarPubMed
Debrock, S. and Declerck, P. J. (1997). Neutralization of plasminogen activator inhibitor-1 inhibitory properties: identification of two different mechanisms. Biochimica et Biophysica Acta 1337, 257266.CrossRefGoogle ScholarPubMed
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M. and Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36, W465469.CrossRefGoogle ScholarPubMed
Drouet, C., Bouillet, L., Csopaki, F. and Colomb, M. G. (1999). Hepatitis C virus NS3 serine protease interacts with the serpin C1 inhibitor. FEBS Letters 458, 415418.CrossRefGoogle ScholarPubMed
Dupre, L., Kremer, L., Wolowczuk, I., Riveau, G., Capron, A. and Locht, C. (2001). Immunostimulatory effect of IL-18-encoding plasmid in DNA vaccination against murine Schistosoma mansoni infection. Vaccine 19, 13731380.CrossRefGoogle ScholarPubMed
Edgar, R. C. (2004 a). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.CrossRefGoogle ScholarPubMed
Edgar, R. C. (2004 b). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.CrossRefGoogle ScholarPubMed
Fenwick, A. and Webster, J. P. (2006). Schistosomiasis: challenges for control, treatment and drug resistance. Current Opinion in Infectious Diseases 19, 577582.CrossRefGoogle ScholarPubMed
Gettins, P. G. (2002 a). The F-helix of serpins plays an essential, active role in the proteinase inhibition mechanism. FEBS Letters 523, 26.CrossRefGoogle ScholarPubMed
Gettins, P. G. (2002 b). Serpin structure, mechanism, and function. Chemical Reviews 102, 47514804.CrossRefGoogle ScholarPubMed
Gettins, P. G. and Olson, S. T. (2009). Exosite determinants of serpin specificity. Journal of Biological Chemistry 284, 2044120445.CrossRefGoogle ScholarPubMed
Ghendler, Y., Arnon, R. and Fishelson, Z. (1994). Schistosoma mansoni: isolation and characterization of Smpi56, a novel serine protease inhibitor. Experimental Parasitology 78, 121131.CrossRefGoogle ScholarPubMed
Gille, C. and Frommel, C. (2001). STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 17, 377378.CrossRefGoogle ScholarPubMed
Gobert, G. N., Moertel, L., Brindley, P. J. and McManus, D. P. (2009). Developmental gene expression profiles of the human pathogen Schistosoma japonicum . BMC Genomics 10, 128.CrossRefGoogle ScholarPubMed
Guex, N. and Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 27142723.CrossRefGoogle ScholarPubMed
Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systems Biology 52, 696704.CrossRefGoogle ScholarPubMed
Hall, S. L., Braschi, S., Truscott, M., Mathieson, W., Cesari, I. M. and Wilson, R. A. (2011). Insights into blood feeding by schistosomes from a proteomic analysis of worm vomitus. Molecular and Biochemical Parasitology 179, 1829.CrossRefGoogle ScholarPubMed
Han, J., Zhang, H., Min, G., Kemler, D. and Hashimoto, C. (2000). A novel Drosophila serpin that inhibits serine proteases. FEBS Letters 468, 194198.CrossRefGoogle ScholarPubMed
He, Y. X., Salafsky, B. and Ramaswamy, K. (2001). Host–parasite relationships of Schistosoma japonicum in mammalian hosts. Trends in Parasitology 17, 320324.CrossRefGoogle ScholarPubMed
Hirst, C. E., Buzza, M. S., Bird, C. H., Warren, H. S., Cameron, P. U., Zhang, M., Ashton-Rickardt, P. G. and Bird, P. I. (2003). The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. Journal of Immunology 170, 805815.CrossRefGoogle ScholarPubMed
Hitchman, R. B., Locanto, E., Possee, R. D. and King, L. A. (2011). Optimizing the baculovirus expression vector system. Methods 55, 5257.CrossRefGoogle ScholarPubMed
Hopkins, P. C., Carrell, R. W. and Stone, S. R. (1993). Effects of mutations in the hinge region of serpins. Biochemistry 32, 76507657.CrossRefGoogle ScholarPubMed
Huang, W., Haas, T. A., Biesterfeldt, J., Mankawsky, L., Blanton, R. E. and Lee, X. (1999). Purification and crystallization of a novel membrane-anchored protein: the Schistosoma haematobium serpin. Acta Crystallographica. Section D, Biological Crystallography 55, 350352.CrossRefGoogle ScholarPubMed
Huntington, J. A. (2006). Shape-shifting serpins – advantages of a mobile mechanism. Trends in Biochemical Sciences 31, 427435.CrossRefGoogle ScholarPubMed
Hwang, J. H., Lee, W. G., Na, B. K., Lee, H. W., Cho, S. H. and Kim, T. S. (2009). Identification and characterization of a serine protease inhibitor of Paragonimus westermani . Parasitology Research 104, 495501.CrossRefGoogle ScholarPubMed
Ingram, J., Knudsen, G., Lim, K. C., Hansell, E., Sakanari, J. and McKerrow, J. (2011). Proteomic analysis of human skin treated with larval schistosome peptidases reveals distinct invasion strategies among species of blood flukes. PLOS Neglected Tropical Diseases 5, e1337.CrossRefGoogle ScholarPubMed
Irving, J. A., Pike, R. N., Lesk, A. M. and Whisstock, J. C. (2000). Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Research 10, 18451864.CrossRefGoogle ScholarPubMed
Jang-Lee, J., Curwen, R. S., Ashton, P. D., Tissot, B., Mathieson, W., Panico, M., Dell, A., Wilson, R. A. and Haslam, S. M. (2007). Glycomics analysis of Schistosoma mansoni egg and cercarial secretions. Molecular and Cellular Proteomics 6, 14851499.CrossRefGoogle ScholarPubMed
Jiang, W., Hong, Y., Peng, J., Fu, Z., Feng, X., Liu, J., Shi, Y. and Lin, J. (2010). Study on differences in the pathology, T cell subsets and gene expression in susceptible and non-susceptible hosts infected with Schistosoma japonicum . PLOS ONE 5, e13494.CrossRefGoogle Scholar
Jones, M. K., Bong, S. H., Green, K. M., Holmes, P., Duke, M., Loukas, A. and McManus, D. P. (2008). Correlative and dynamic imaging of the hatching biology of Schistosoma japonicum from eggs prepared by high pressure freezing. PLOS Neglected Tropical Diseases 2, e334.CrossRefGoogle ScholarPubMed
Kang, J. M., Sohn, W. M., Ju, J. W., Kim, T. S. and Na, B. K. (2010). Identification and characterization of a serine protease inhibitor of Clonorchis sinensis . Acta Tropica 116, 134140.CrossRefGoogle ScholarPubMed
Kelley, L. A. and Sternberg, M. J. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363371.CrossRefGoogle Scholar
Kim, S., Woo, J., Seo, E. J., Yu, M. and Ryu, S. (2001). A 2.1 A resolution structure of an uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops. Journal of Molecular Biology 306, 109119.CrossRefGoogle ScholarPubMed
Knopf, P. M., Nutman, T. B. and Reasoner, J. A. (1977). Schistosoma mansoni: resistance to reinfection in the rat. Experimental Parasitology 41, 7482.CrossRefGoogle ScholarPubMed
Knox, D. P. (2007). Proteinase inhibitors and helminth parasite infection. Parasite Immunology 29, 5771.CrossRefGoogle ScholarPubMed
Knudsen, G. M., Medzihradszky, K. F., Lim, K. C., Hansell, E. and McKerrow, J. H. (2005). Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics 4, 18621875.CrossRefGoogle ScholarPubMed
Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., Rosado, C. J., Langendorf, C. G., Pike, R. N., Bird, P. I. and Whisstock, J. C. (2006). An overview of the serpin superfamily. Genome Biology 7, 216.CrossRefGoogle ScholarPubMed
Leboulle, G., Crippa, M., Decrem, Y., Mejri, N., Brossard, M., Bollen, A. and Godfroid, E. (2002). Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. Journal of Biological Chemistry 277, 1008310089.CrossRefGoogle ScholarPubMed
Li, J., Wang, Z., Canagarajah, B., Jiang, H., Kanost, M. and Goldsmith, E. J. (1999). The structure of active serpin 1 K from Manduca sexta . Structure 7, 103109.CrossRefGoogle Scholar
Li, X. H., de Castro-Borges, W., Parker-Manuel, S., Vance, G. M., Demarco, R., Neves, L. X., Evans, G. J. and Wilson, R. A. (2013). The schistosome oesophageal gland: initiator of blood processing. PLOS Neglected Tropical Diseases 7, e2337.CrossRefGoogle ScholarPubMed
Liu, Y., Li, F., Wang, B., Dong, B., Zhang, X. and Xiang, J. (2009). A serpin from Chinese shrimp Fenneropenaeus chinensis is responsive to bacteria and WSSV challenge. Fish and Shellfish Immunology 26, 345351.CrossRefGoogle ScholarPubMed
MacLennan, K., McLean, K. and Knox, D. P. (2005). Serpin expression in the parasitic stages of Trichostrongylus vitrinus, an ovine intestinal nematode. Parasitology 130, 349357.CrossRefGoogle ScholarPubMed
Mak, P., Enghild, J. J. and Dubin, A. (1996). Hamster antithrombin III: purification, characterization and acute phase response. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 115, 135141.CrossRefGoogle ScholarPubMed
Martzen, M. R., Geise, G. L., Hogan, B. J. and Peanasky, R. J. (1985). Ascaris suum: localization by immunochemical and fluorescent probes of host proteases and parasite proteinase inhibitors in cross-sections. Experimental Parasitology 60, 139149.CrossRefGoogle ScholarPubMed
McCarthy, B. J. and Worrall, D. M. (1997). Analysis of serpin inhibitory function by mutagenesis of ovalbumin and generation of chimeric ovalbumin/PAI-2 fusion proteins. Journal of Molecular Biology 267, 561569.CrossRefGoogle ScholarPubMed
McCoy, A. J., Pei, X. Y., Skinner, R., Abrahams, J. P. and Carrell, R. W. (2003). Structure of beta-antithrombin and the effect of glycosylation on antithrombin's heparin affinity and activity. Journal of Molecular Biology 326, 823833.CrossRefGoogle ScholarPubMed
McManus, D. P. and Loukas, A. (2008). Current status of vaccines for schistosomiasis. Clinical Microbiology Reviews 21, 225242.CrossRefGoogle ScholarPubMed
Merckelbach, A. and Ruppel, A. (2007). Biochemical properties of an intracellular serpin from Echinococcus multilocularis . Molecular and Biochemical Parasitology 156, 8488.CrossRefGoogle ScholarPubMed
Mika, A., Reynolds, S. L., Mohlin, F. C., Willis, C., Swe, P. M., Pickering, D. A., Halilovic, V., Wijeyewickrema, L. C., Pike, R. N., Blom, A. M., Kemp, D. J. and Fischer, K. (2012). Novel scabies mite serpins inhibit the three pathways of the human complement system. PLOS ONE 7, e40489.CrossRefGoogle ScholarPubMed
Milligan, J. N. and Jolly, E. R. (2011). Cercarial transformation and in vitro cultivation of Schistosoma mansoni schistosomules. Journal of Visualized Experiments 54, 31913198.Google Scholar
Miura, Y., Kawabata, S., Wakamiya, Y., Nakamura, T. and Iwanaga, S. (1995). A limulus intracellular coagulation inhibitor type 2. Purification, characterization, cDNA cloning, and tissue localization. Journal of Biological Chemistry 270, 558565.CrossRefGoogle ScholarPubMed
Modha, J. and Doenhoff, M. J. (1994). Schistosoma mansoni host-parasite relationship: interaction of contrapsin with adult worms. Parasitology 109, 487495.CrossRefGoogle ScholarPubMed
Molehin, A. J., Gobert, G. N. and McManus, D. P. (2012). Serine protease inhibitors of parasitic helminths. Parasitology 139, 681695.CrossRefGoogle ScholarPubMed
Nagano, I., Wu, Z., Nakada, T., Matsuo, A. and Takahashi, Y. (2001). Molecular cloning and characterization of a serine proteinase inhibitor from Trichinella spiralis . Parasitology 123, 7783.CrossRefGoogle ScholarPubMed
Neill, P. J., Smith, J. H., Doughty, B. L. and Kemp, M. (1988). The ultrastructure of the Schistosoma mansoni egg. American Journal of Tropical Medicine and Hygiene 39, 5265.CrossRefGoogle ScholarPubMed
Nicholas, K. B., Nicholas, H. B. and Deerfield, D. W. (1997). GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4, 14.Google Scholar
O'Donnell, R. A. and Blackman, M. J. (2005). The role of malaria merozoite proteases in red blood cell invasion. Current Opinion in Microbiology 8, 422427.CrossRefGoogle ScholarPubMed
Pak, S. C., Tsu, C., Luke, C. J., Askew, Y. S. and Silverman, G. A. (2006). The Caenorhabditis elegans muscle specific serpin, SRP-3, neutralizes chymotrypsin-like serine peptidases. Biochemistry 45, 44744480.CrossRefGoogle ScholarPubMed
Patston, P. A. (2000). Serpins and other serine protease inhibitors. Immunology Today 21, 354.CrossRefGoogle ScholarPubMed
Peng, J., Gobert, G. N., Hong, Y., Jiang, W., Han, H., McManus, D. P., Wang, X., Liu, J., Fu, Z., Shi, Y. and Lin, J. (2011). Apoptosis governs the elimination of Schistosoma japonicum from the non-permissive host Microtus fortis . PLOS ONE 6, e21109.CrossRefGoogle ScholarPubMed
Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785786.CrossRefGoogle ScholarPubMed
Prevot, P. P., Adam, B., Boudjeltia, K. Z., Brossard, M., Lins, L., Cauchie, P., Brasseur, R., Vanhaeverbeek, M., Vanhamme, L. and Godfroid, E. (2006). Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus . Journal of Biological Chemistry 281, 2636126369.CrossRefGoogle ScholarPubMed
Ritchie, H. and Booth, N. A. (1998). Secretion of plasminogen activator inhibitor 2 by human peripheral blood monocytes occurs via an endoplasmic reticulum-golgi-independent pathway. Experimental Cell Research 242, 439450.CrossRefGoogle ScholarPubMed
Schechter, I. and Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications 27, 157162.CrossRefGoogle ScholarPubMed
Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009). The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345351.Google Scholar
Schramm, G., Gronow, A., Knobloch, J., Wippersteg, V., Grevelding, C. G., Galle, J., Fuller, H., Stanley, R. G., Chiodini, P. L., Haas, H. and Doenhoff, M. J. (2006). IPSE/alpha-1: a major immunogenic component secreted from Schistosoma mansoni eggs. Molecular and Biochemical Parasitology 147, 919.CrossRefGoogle Scholar
Shepherd, J. C., Aitken, A. and McManus, D. P. (1991). A protein secreted in vivo by Echinococcus granulosus inhibits elastase activity and neutrophil chemotaxis. Molecular and Biochemical Parasitology 44, 8190.CrossRefGoogle ScholarPubMed
Silverman, G. A., Bird, P. I., Carrell, R. W., Church, F. C., Coughlin, P. B., Gettins, P. G., Irving, J. A., Lomas, D. A., Luke, C. J., Moyer, R. W., Pemberton, P. A., Remold-O'Donnell, E., Salvesen, G. S., Travis, J. and Whisstock, J. C. (2001). The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. Journal of Biological Chemistry 276, 3329333296.CrossRefGoogle Scholar
Siracusano, A., Rigano, R., Ortona, E., Profumo, E., Margutti, P., Buttari, B., Delunardo, F. and Teggi, A. (2008). Immunomodulatory mechanisms during Echinococcus granulosus infection. Experimental Parasitology 119, 483489.CrossRefGoogle ScholarPubMed
Sugino, M., Imamura, S., Mulenga, A., Nakajima, M., Tsuda, A., Ohashi, K. and Onuma, M. (2003). A serine proteinase inhibitor (serpin) from ixodid tick Haemaphysalis longicornis; cloning and preliminary assessment of its suitability as a candidate for a tick vaccine. Vaccine 21, 28442851.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thorgersen, E. B., Ghebremariam, Y. T., Thurman, J. M., Fung, M., Nielsen, E. W., Holers, V. M., Kotwal, G. J. and Mollnes, T. E. (2007). Candidate inhibitors of porcine complement. Molecular Immunology 44, 18271834.CrossRefGoogle ScholarPubMed
Usawattanakul, W., Kamijo, T. and Kojima, S. (1982). Comparison of recovery of schistosomula of Schistosoma japonicum from lungs of mice and rats. Journal of Parasitology 68, 783790.CrossRefGoogle ScholarPubMed
van Gent, D., Sharp, P., Morgan, K. and Kalsheker, N. (2003). Serpins: structure, function and molecular evolution. International Journal of Biochemistry and Cell Biology 35, 15361547.CrossRefGoogle ScholarPubMed
Wuhrer, M., Balog, C. I., Catalina, M. I., Jones, F. M., Schramm, G., Haas, H., Doenhoff, M. J., Dunne, D. W., Deelder, A. M. and Hokke, C. H. (2006). IPSE/alpha-1, a major secretory glycoprotein antigen from schistosome eggs, expresses the Lewis X motif on core-difucosylated N-glycans. FEBS Journal 273, 22762292.CrossRefGoogle Scholar
Yan, Y., Liu, S., Song, G., Xu, Y. and Dissous, C. (2005). Characterization of a novel vaccine candidate and serine proteinase inhibitor from Schistosoma japonicum (Sj serpin). Veterinary Parasitology 131, 5360.CrossRefGoogle ScholarPubMed
Yenbutr, P. and Scott, A. L. (1995). Molecular cloning of a serine proteinase inhibitor from Brugia malayi . Infection and Immunity 63, 17451753.CrossRefGoogle ScholarPubMed
Yi, D., Xu, L., Yan, R. and Li, X. (2010). Haemonchus contortus: cloning and characterization of serpin. Experimental Parasitology 125, 363370.CrossRefGoogle ScholarPubMed
Zang, X. and Maizels, R. M. (2001). Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends in Biochemical Sciences 26, 191197.CrossRefGoogle ScholarPubMed
Zang, X., Yazdanbakhsh, M., Jiang, H., Kanost, M. R. and Maizels, R. M. (1999). A novel serpin expressed by blood-borne microfilariae of the parasitic nematode Brugia malayi inhibits human neutrophil serine proteinases. Blood 94, 14181428.CrossRefGoogle ScholarPubMed
Zang, X., Atmadja, A. K., Gray, P., Allen, J. E., Gray, C. A., Lawrence, R. A., Yazdanbakhsh, M. and Maizels, R. M. (2000). The serpin secreted by Brugia malayi microfilariae, Bm-SPN-2, elicits strong, but short-lived, immune responses in mice and humans. Journal of Immunology 165, 51615169.CrossRefGoogle ScholarPubMed
Zhang, M., Park, S. M., Wang, Y., Shah, R., Liu, N., Murmann, A. E., Wang, C. R., Peter, M. E. and Ashton-Rickardt, P. G. (2006). Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 24, 451461.CrossRefGoogle ScholarPubMed
Zhao, Y., Chapman, D. A. and Jones, I. M. (2003). Improving baculovirus recombination. Nucleic Acids Research 31, E66.CrossRefGoogle ScholarPubMed
Zou, Z., Picheng, Z., Weng, H., Mita, K. and Jiang, H. (2009). A comparative analysis of serpin genes in the silkworm genome. Genomics 93, 367375.CrossRefGoogle ScholarPubMed