Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T21:17:27.100Z Has data issue: false hasContentIssue false

Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica

Published online by Cambridge University Press:  12 July 2017

MARTÍN CANCELA*
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
ILEANA CORVO
Affiliation:
Departamento de Genética, Facultad de Medicina, Universidad de la República, UDELAR, Montevideo, Uruguay Laboratorio de I+D de Moléculas Bioactivas, CenUR Litoral Norte Sede Paysandú, Universidad de la República, Paysandú, Uruguay
EDILEUZA DA SILVA
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
ALINE TEICHMANN
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
LEDA ROCHE
Affiliation:
Departamento de Genética, Facultad de Medicina, Universidad de la República, UDELAR, Montevideo, Uruguay
ALVARO DÍAZ
Affiliation:
Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química/IQB, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
JOSÉ FRANSISCO TORT
Affiliation:
Departamento de Genética, Facultad de Medicina, Universidad de la República, UDELAR, Montevideo, Uruguay
HENRIQUE B. FERREIRA
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
ARNALDO ZAHA
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
*
*Corresponding author: Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Caixa Postal 15053, CEP 91501-970, Porto Alegre, RS, Brazil. E-mail: [email protected]

Summary

Cystatins are small, phylogenetically conserved proteins that are tight-binding inhibitors of cysteine proteinases. The liver fluke Fasciola hepatica uses a diverse set of cysteine proteinases of the papain superfamily for host invasion, immune evasion and nutrition, but little is known about the regulation of these enzymes. The aim of this work is to characterize the cystatin repertoire of F. hepatica. For this purpose, we first surveyed the available sequence databases, identifying three different F. hepatica single-domain cystatins. In agreement with the in silico predictions, at least three small proteins with cysteine proteinase binding activity were identified. Phylogenetic analyses showed that the three cystatins (named FhStf-1, -2 and -3) are members of the I25A subfamily (stefins). Whereas FhStf-1 grouped with classical stefins, FhStf-2 and 3 fell in a divergent stefin subgroup unusually featuring signal peptides. Recombinant rFhStf-1, -2 and -3 had potent inhibitory activity against F. hepatica cathepsin L cysteine proteinases but differed in their capacity to inhibit mammalian cathepsin B, L and C. FhStf-1 was localized in the F. hepatica reproductive organs (testes and ovary), and at the surface lamella of the adult gut, where it may regulate cysteine proteinases related with reproduction and digestion, respectively. FhStf-1 was also detected among F. hepatica excretion–secretion (E/S) products of adult flukes. This suggests that it is secreted by non-classical secretory pathway and that it may interact with host lysosomal cysteine proteinases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamson, M. (1994). Cystatins. Methods in Enzymology 244, 685700.Google Scholar
Acosta, D., Goni, F. and Carmona, C. (1998). Characterization and partial purification of a leucine aminopeptidase from Fasciola hepatica . Journal of Parasitology 84, 17.Google Scholar
Andrews, S. J. (1999). The life cycle of Fasciola hepatica . In Fasciolosis (ed. Dalton, J. P.), pp. 129. CABI Publishing, Oxin, UK.Google Scholar
Barrett, A. J. (1986). The cystatins: a diverse superfamily of cysteine peptidase inhibitors. Biomedica Biochimica Acta 45, 13631374.Google Scholar
Beckham, S. A., Piedrafita, D., Phillips, C. I., Samarawickrema, N., Law, R. H., Smooker, P. M., Quinsey, N. S., Irving, J. A., Greenwood, D., Verhelst, S. H., Bogyo, M., Turk, B., Coetzer, T. H., Wijeyewickrema, L. C., Spithill, T. W. and Pike, R. N. (2009). A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites. International Journal of Biochemistry and Cell Biology 41, 16011612.Google Scholar
Cancela, M., Carmona, C., Rossi, S., Frangione, B., Goni, F. and Berasain, P. (2004). Purification, characterization, and immunolocalization of paramyosin from the adult stage of Fasciola hepatica. Parasitology Research 92, 441448.Google Scholar
Cancela, M., Acosta, D., Rinaldi, G., Silva, E., Duran, R., Roche, L., Zaha, A., Carmona, C. and Tort, J. F. (2008). A distinctive repertoire of cathepsins is expressed by juvenile invasive Fasciola hepatica. Biochimie 90, 14611475.Google Scholar
Cancela, M., Ruetalo, N., Dell'Oca, N., da Silva, E., Smircich, P., Rinaldi, G., Roche, L., Carmona, C., Alvarez-Valin, F., Zaha, A. and Tort, J. F. (2010). Survey of transcripts expressed by the invasive juvenile stage of the liver fluke Fasciola hepatica. BMC Genomics 11, 227.Google Scholar
Canevari, J., Ceballos, L., Sanabria, R., Romero, J., Olaechea, F., Ortiz, P., Cabrera, M., Gayo, V., Fairweather, I., Lanusse, C. and Alvarez, L. (2013). Testing albendazole resistance in Fasciola hepatica: validation of an egg hatch test with isolates from South America and the United Kingdom. Journal of Helminthology 88, 286292.Google Scholar
Carmona, C. and Tort, J. F. (2017). Fasciolosis in South America: epidemiology and control challenges. Journal of Helminthology 91, 99109.Google Scholar
Carmona, C., Dowd, A. J., Smith, A. M. and Dalton, J. P. (1993). Cathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosinophil attachment to newly excysted juveniles. Molecular and Biochemical Parasitology 62, 917.Google Scholar
Chen, L., He, B., Hou, W. and He, L. (2017). Cysteine protease inhibitor of Schistosoma japonicum – a parasite-derived negative immunoregulatory factor. Parasitology Research 116, 901908.Google Scholar
Collins, P. R., Stack, C. M., O'Neill, S. M., Doyle, S., Ryan, T., Brennan, G. P., Mousley, A., Stewart, M., Maule, A. G., Dalton, J. P. and Donnelly, S. (2004). Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propetide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. Journal of Biological Chemistry 279, 1703817046.Google Scholar
Coronado, S., Barrios, L., Zakzuk, J., Regino, R., Ahumada, V., Franco, L., Ocampo, Y. and Caraballo, L. (2017). A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis. Parasite Immunology 39, e12425.Google Scholar
Corvo, I., Cancela, M., Cappetta, M., Pi-Denis, N., Tort, J. F. and Roche, L. (2009). The major cathepsin L secreted by the invasive juvenile Fasciola hepatica prefers proline in the S2 subsite and can cleave collagen. Molecular and Biochemical Parasitology 167, 4147.Google Scholar
Cuesta-Astroz, Y., Scholte, L. L., Pais, F. S., Oliveira, G. and Nahum, L. A. (2014). Evolutionary analysis of the cystatin family in three Schistosoma species. Frontiers in Genetics 5, 206.Google Scholar
Cwiklinski, K., de la Torre-Escudero, E., Trelis, M., Bernal, D., Dufresne, P. J., Brennan, G. P., O'Neill, S., Tort, J., Paterson, S., Marcilla, A., Dalton, J. P. and Robinson, M. W. (2015). The extracellular vesicles of the helminth pathogen, Fasciola hepatica: biogenesis pathways and cargo molecules involved in parasite pathogenesis. Molecular and Cellular Proteomics 14, 32583273.Google Scholar
Dainichi, T., Maekawa, Y., Ishii, K., Zhang, T., Nashed, B. F., Sakai, T., Takashima, M. and Himeno, K. (2001). Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response. Infection and Immunology 69, 73807386.Google Scholar
Dalton, J. P. and Heffernan, M. (1989). Thiol proteases released in vitro by Fasciola hepatica . Molecular and Biochemical Parasitology 35, 161166.Google Scholar
Dalton, J. P., Neill, S. O., Stack, C., Collins, P., Walshe, A., Sekiya, M., Doyle, S., Mulcahy, G., Hoyle, D., Khaznadji, E., Moire, N., Brennan, G., Mousley, A., Kreshchenko, N., Maule, A. G. and Donnelly, S. M. (2003). Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. International Journal of Parasitology 33, 11731181.Google Scholar
Danilowicz-Luebert, E., Steinfelder, S., Kuhl, A. A., Drozdenko, G., Lucius, R., Worm, M., Hamelmann, E. and Hartmann, S. (2013). A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation. International Journal of Parasitology 43, 201210.Google Scholar
Darawshe, S., Tsafadyah, Y. and Daniel, E. (1987). Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochemical Journal 242, 689694.Google Scholar
Di Maggio, L. S., Tirloni, L., Pinto, A. F., Diedrich, J. K., Yates, J. R. III, Benavides, U., Carmona, C., da Silva Vaz, I. Jr. and Berasain, P. (2016). Across intra-mammalian stages of the liver fluke Fasciola hepatica: a proteomic study. Scientific Reports 6, 32796.Google Scholar
Geadkaew, A., Kosa, N., Siricoon, S., Grams, S. V. and Grams, R. (2014). A 170 kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system. Molecular and Biochemical Parasitology 196, 100107.Google Scholar
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307321.Google Scholar
Guo, A. (2015). Comparative analysis of cystatin superfamily in platyhelminths. PLoS ONE 10, e0124683.Google Scholar
Hartmann, S. and Lucius, R. (2003). Modulation of host immune responses by nematode cystatins. International Journal of Parasitology 33, 12911302.Google Scholar
He, B., Cai, G., Ni, Y., Li, Y., Zong, H. and He, L. (2011). Characterization and expression of a novel cystatin gene from Schistosoma japonicum . Molecular and Cellular Probes 25, 186193.Google Scholar
Henskens, Y. M., Veerman, E. C. and Nieuw Amerongen, A. V. (1996). Cystatins in health and disease. Biological Chemistry Hoppe Seyler 377, 7186.Google Scholar
Kang, J. M., Lee, K. H., Sohn, W. M. and Na, B. K. (2011). Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of Clonorchis sinensis . Molecular and Biochemical Parasitology 177, 126134.Google Scholar
Kang, J. M., Ju, H. L., Lee, K. H., Kim, T. S., Pak, J. H., Sohn, W. M. and Na, B. K. (2014). Identification and characterization of the second cysteine protease inhibitor of Clonorchis sinensis (CsStefin-2). Parasitology Research 113, 4758.Google Scholar
Katoh, K. and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772780.Google Scholar
Kelley, J. M., Elliott, T. P., Beddoe, T., Anderson, G., Skuce, P. and Spithill, T. W. (2016). Current threat of triclabendazole resistance in Fasciola hepatica . Trends in Parasitology 32, 458469.Google Scholar
Khaznadji, E., Collins, P., Dalton, J. P., Bigot, Y. and Moire, N. (2005). A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica . International Journal of Parasitology 35, 11151125.Google Scholar
Klotz, C., Ziegler, T., Danilowicz-Luebert, E. and Hartmann, S. (2011 a). Cystatins of parasitic organisms. Advances in Experimental Medicine and Biology 712, 208221.Google Scholar
Klotz, C., Ziegler, T., Figueiredo, A. S., Rausch, S., Hepworth, M. R., Obsivac, N., Sers, C., Lang, R., Hammerstein, P., Lucius, R. and Hartmann, S. (2011 b). A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages. PLoS Pathogens 7, e1001248.Google Scholar
Kopitar-Jerala, N. (2015). Innate immune response in brain, NF-Kappa B signaling and cystatins. Frontiers in Molecular Neuroscience 8, 73.Google Scholar
Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305, 567580.Google Scholar
Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Law, R. H., Smooker, P. M., Irving, J. A., Piedrafita, D., Ponting, R., Kennedy, N. J., Whisstock, J. C., Pike, R. N. and Spithill, T. W. (2003). Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infection and Immunology 71, 69216932.Google Scholar
Liu, F., Cheng, W., Pappoe, F., Hu, X., Wen, H., Luo, Q., Wang, S., Deng, F., Xie, Y., Xu, Y. and Shen, J. (2016). Schistosoma japonicum cystatin attenuates murine collagen-induced arthritis. Parasitology Research 115, 37953806.Google Scholar
Mas-Coma, S., Valero, M. A. and Bargues, M. D. (2014). Fascioliasis. Advances in Experimental Medicine and Biology 766, 77114.Google Scholar
McGonigle, L., Mousley, A., Marks, N. J., Brennan, G. P., Dalton, J. P., Spithill, T. W., Day, T. A. and Maule, A. G. (2008). The silencing of cysteine proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration. International Journal of Parasitology 38, 149155.Google Scholar
Morales, F. C., Furtado, D. R. and Rumjanek, F. D. (2004). The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Molecular and Biochemical Parasitology 134, 6573.Google Scholar
Morrison, J. F. (1969). Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochimica et Biophysica Acta 185, 269286.Google Scholar
Overend, D. J. and Bowen, F. L. (1995). Resistance of Fasciola hepatica to triclabendazole. Australian Veterinary Journal 72, 275276.Google Scholar
Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785786.Google Scholar
Rawlings, N. D., Barrett, A. J. and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 40, D343D350.Google Scholar
Rawlings, N. D., Barrett, A. J. and Bateman, A. (2014). Using the MEROPS database for proteolytic enzymes and their inhibitors and substrates. Current Protocols in Bioinformatics 48, 1 25, 2133.Google Scholar
Reolon, L. A., Martello, C. L., Schrank, I. S. and Ferreira, H. B. (2014). Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach. PLoS ONE 9, e112596.Google Scholar
Rinaldi, G., Morales, M. E., Cancela, M., Castillo, E., Brindley, P. J. and Tort, J. F. (2008). Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica . PLoS Neglected Tropical Diseases 2, e260.Google Scholar
Robinson, M. W., Dalton, J. P. and Donnelly, S. (2008 a). Helminth pathogen cathepsin proteases: it's a family affair. Trends in Biochemical Sciences 33, 601608.Google Scholar
Robinson, M. W., Tort, J. F., Lowther, J., Donnelly, S. M., Wong, E., Xu, W., Stack, C. M., Padula, M., Herbert, B. and Dalton, J. P. (2008 b). Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors. Molecular and Cellular Proteomics 7, 11111123.Google Scholar
Schnoeller, C., Rausch, S., Pillai, S., Avagyan, A., Wittig, B. M., Loddenkemper, C., Hamann, A., Hamelmann, E., Lucius, R. and Hartmann, S. (2008). A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. Journal of Immunology 180, 42654272.Google Scholar
Schuijs, M. J., Hartmann, S., Selkirk, M. E., Roberts, L. B., Openshaw, P. J. and Schnoeller, C. (2016). The helminth-derived immunomodulator AvCystatin reduces virus enhanced inflammation by induction of regulatory IL-10+ T cells. PLoS ONE 11, e0161885.Google Scholar
Siricoon, S., Grams, S. V. and Grams, R. (2012). Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica . Molecular and Biochemical Parasitology 186, 126133.Google Scholar
Spithill, T. M., Smooker, P. M. and Copeman, D. B. (1999). Fasciola gigantica: epidemiology, control, immunology and molecular biology. In Fasciolosis (ed. Dalton, J. P.), pp. 465525. CABI Publishing, Oxin, UK.Google Scholar
Stoka, V., Turk, V. and Turk, B. (2016). Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Research Reviews 32, 2237.Google Scholar
Sun, Y., Liu, G., Li, Z., Chen, Y., Liu, Y., Liu, B. and Su, Z. (2013). Modulation of dendritic cell function and immune response by cysteine protease inhibitor from murine nematode parasite Heligmosomoides polygyrus . Immunology 138, 370381.Google Scholar
Tarasuk, M., Vichasri Grams, S., Viyanant, V. and Grams, R. (2009). Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Molecular and Biochemical Parasitology 167, 6071.Google Scholar
Turk, V., Stoka, V. and Turk, D. (2008). Cystatins: biochemical and structural properties, and medical relevance. Frontiers in Bioscience 13, 54065420.Google Scholar
Wang, S., Xie, Y., Yang, X., Wang, X., Yan, K., Zhong, Z., Xu, Y., Zhang, Y., Liu, F. and Shen, J. (2016). Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice. Parasites & Vectors 9, 6.Google Scholar
Whelan, R. A., Rausch, S., Ebner, F., Gunzel, D., Richter, J. F., Hering, N. A., Schulzke, J. D., Kuhl, A. A., Keles, A., Janczyk, P., Nockler, K., Wieler, L. H. and Hartmann, S. (2014). A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Molecular Therapy 22, 17301740.Google Scholar
WHO (2007). Report of the WHO Informal Meeting on Use of Triclabendazole in Fascioliasis Control. World Health Organization, Geneva, Switzerland.Google Scholar
Yang, X., Liu, J., Yue, Y., Chen, W., Song, M., Zhan, X. and Wu, Z. (2014). Cloning, expression and characterisation of a type II cystatin from Schistosoma japonicum, which could regulate macrophage activation. Parasitology Research 113, 39853992.Google Scholar
Zawistowska-Deniziak, A., Wasyl, K., Norbury, L. J., Wesolowska, A., Bien, J., Grodzik, M., Wisniewski, M., Baska, P. and Wedrychowicz, H. (2013). Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica . Molecular and Biochemical Parasitology 190, 2737.Google Scholar
Supplementary material: Image

Cancela supplementary material

Figure S1

Download Cancela supplementary material(Image)
Image 2.6 MB
Supplementary material: PDF

Cancela supplementary material

Figure S2

Download Cancela supplementary material(PDF)
PDF 311.6 KB
Supplementary material: File

Cancela supplementary material

Table S1

Download Cancela supplementary material(File)
File 14.1 KB