Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:03:25.648Z Has data issue: false hasContentIssue false

Factors affecting surface changes in intact cercariae and cercarial bodies of Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

F. J. Pinto-Ramalho
Affiliation:
Departments of Biochemistry-Immunology, Zoology-Parasitology, and Schistosomiasis Research Unit, Institute of Biological Sciences, Federal University of Minas Gerais, 30000 Belo Horizonte, C.P. 2486, Brazil
G. Gazzinelli
Affiliation:
Departments of Biochemistry-Immunology, Zoology-Parasitology, and Schistosomiasis Research Unit, Institute of Biological Sciences, Federal University of Minas Gerais, 30000 Belo Horizonte, C.P. 2486, Brazil
R. E. Howells
Affiliation:
Departments of Biochemistry-Immunology, Zoology-Parasitology, and Schistosomiasis Research Unit, Institute of Biological Sciences, Federal University of Minas Gerais, 30000 Belo Horizonte, C.P. 2486, Brazil
J. Pellegrino
Affiliation:
Departments of Biochemistry-Immunology, Zoology-Parasitology, and Schistosomiasis Research Unit, Institute of Biological Sciences, Federal University of Minas Gerais, 30000 Belo Horizonte, C.P. 2486, Brazil

Extract

The effect of different incubation media and of temperature on the induction of water sensitivity has been investigated in intact and tailless Schistosoma mansoni cercariae. Removal of the cercarial tail by vortex stirring and elevation of the temperature of the medium from 27 to 37°C resulted in the rapid onset of permeability changes in the larvae. The rate of change was greater in water than in TC-199 or Hanks' BSS media. Lowering the pH of the medium or increasing the concentration of Ca2+ ions decreased the rate of permeability change: raising the pH of the medium or the addition of 10−5 M EDTA enhanced the rate.

Raising the temperature of the medium also increased the rate of permeability change in intact cercariae although the rates obtained varied with the different media tested, being greatest in TC-199.

It is concluded that both temperature elevation and loss of the cercarial tail influence the onset and rate of permeability changes in cercarial bodies during the transformation to schistosomula.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clegg, J. A. & Smithers, S. R. (1968). Death of schistosome cercariae during penetration of the skin. II. Penetration of mammalian skin by Schistosoma mansoni. Parasitology 58, 111–28.CrossRefGoogle ScholarPubMed
Colley, D. G. & Winkel, S. K. (1974). Schistosoma mansoni: simplified method for the production of schistosomules. Experimental Parasitology 35, 4451.CrossRefGoogle ScholarPubMed
Gazzinelli, G., Oliveira, C. C., Figueiredo, E. A., Pereira, L. H., Coelho, P. M. Z. & Pellegrino, J. (1973). Schistosoma mansoni: biochemical evidence for morphogenetic change from cercaria to schistosomule. Experimental Parasitology 34, 181–8.CrossRefGoogle ScholarPubMed
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. M. (1966). Hydrogen ion buffers for biological research. Biochemistry 5, 467–77.CrossRefGoogle ScholarPubMed
Hockley, D. J. (1972). Schistosoma mansoni: the development of the cercarial tegument. Parasitology 64, 245–52.CrossRefGoogle ScholarPubMed
Howells, R. E., Ramalho-Pinto, F. J., Gazzinelli, C., Oliveira, C. C., Figueiredo, E. A. & Pellegrino, J. (1974). Schistosoma mansoni: the mechanism of cercarial tail loss and its significance to host penetration. Experimental Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Kemp, W. M. (1973). Schistosoma mansoni: immunohistochemical localization of the CHR reaction in glycocalyx of cercaria. Experimental Parasitology 33, 2733.CrossRefGoogle ScholarPubMed
Kusel, J. R. (1970). Studies on the surface of cercariae and schistosomula of Schistosoma mansoni. Parasitology 61, 127–34.CrossRefGoogle ScholarPubMed
Kusel, J. R. (1972). Protein composition and protein synthesis in the surface membranes of Schistosoma mansoni. Parasitology 65, 5569.CrossRefGoogle ScholarPubMed
Ramalho-Pinto, F. J., Gazzinelli, G., Howells, R. E., Mota-Santos, T. A., Figueiredo, E. A. & Pellegrino, J. (1974). Schistosoma mansoni: a defined system for the step-wise transformation of the cercaria to schistosomule in vitro. Experimental Parasitology (in the Press).CrossRefGoogle Scholar
Schmidt, R. W. & Reilly, C. N. (1957). New complexion for titration of calcium in the presence of magnesium. Analytical Chemistry 29, 264–8.CrossRefGoogle Scholar
Smith, J. H., Reynolds, E. S. & Lichtenberg, F. Von (1969). The integument of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 18, 28–9.CrossRefGoogle ScholarPubMed
Stein, P. C. & Lumsden, R. D. (1971). Schistosoma mansoni: topochemical features of cercariae, schistosomula and adults. Experimental Parasitology 33, 499514.CrossRefGoogle Scholar
Stirewalt, M. A. (1963). Cercariae vs. Schistosomule (Schistosoma mansoni). Absence of the pericercarial envelope in vivo and the early physiological and histological metamorphosis of the parasite. Experimental Parasitology 13, 395406.CrossRefGoogle ScholarPubMed