Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T19:57:44.019Z Has data issue: false hasContentIssue false

The egg envelopes of Polymorphus minutus (Acanthocephala)

Published online by Cambridge University Press:  06 April 2009

P. J. Whitpield
Affiliation:
Department of Zoology, King's College, London

Extract

The series of egg envelopes around the acanthor in the mature egg of the palaeacanthocephalan, Polymorphus minutus, has been investigated with light and electron microscopy. An attempt has been made to characterize the macromolecules from which the envelopes are constructed using histochemistry, an analysis of stabilizing bond types and comparisons of envelope fine structure with that of other structural protein systems.The outermost envelope (I) of the mature Polymorphus egg is a fertilization membrane. It is produced by membrane-bounded inclusions in the cytoplasm of the unfertilized oocyte which discharge their contents into the extracellular space around the egg. Envelope II is composed largely of keratin, and its subzones consist of different packing arrangements of 8 nm diameter electron-lucid filaments in an electron-dense matrix. The electron microscopical appearances which this filamentous keratin can present due to section orientation artefacts are discussed. The innermost envelope (III) is 20–30 nm thick and highly corrugated. The spaces between envelopes I and II and between envelope III and the inner surface of envelope II contain material with a granular or fibrous ultrastructure. These spaces show histochemical evidence for the presence of acid mucopolysaccharides.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, E., (1967). The formation of the primary envelope during oocyte differentiation in teleosts. Journal of Cell Biology 35, 193212.CrossRefGoogle ScholarPubMed
Austin, C. R., (1965). Fertilization. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.Google Scholar
Balinsky, B. I., (1965). An Introduction to Embryology. 2nd edition. Philadelphia: W. B. Saunders Co.Google Scholar
Bamford, C. H., Hanby, W. E., & Happey, F., (1950). The structure of synthetic polypeptides. I. X-ray investigation. Proceedings of the Royal Society. A 205, 3047.Google Scholar
Barka, T., & Anderson, P. J., (1963). Histochemistry, Theory, Practice and Bibliography. New York: Harper and Row, Inc.Google Scholar
Bezubik, B., (1957). Studies on Polymorphus minutus (Goeze, 1782), syn. Polymorphus magnus (Skrjabin, 1913). Acta Parasitologica Polonica 5, 18.Google Scholar
von Brand, T., (1940). Further observations upon the composition of Acanthocephala. Journal of Parasitology 26, 301–7.CrossRefGoogle Scholar
Brown, C. H., (1950). A review of the methods available for the determination of the types of forces stabilizing structural proteins in animals. Quarterly Journal of Microscopical Science, 91, 331–9.Google ScholarPubMed
Crewther, W. G., Fraser, R. D. B., Lennox, F. G., & Lindley, H., (1965). The chemistry of keratins. Advances in Protein Chemistry 20, 191346.CrossRefGoogle ScholarPubMed
Crewther, W. G., & Harrap, B. S., (1965). Helix-rich fractions from the low sulphur proteins of wool. Nature 207, 295.CrossRefGoogle Scholar
Crompton, D. W. T., (1970). An Ecological Approach to Acanthocephalan Physiology. Cambridge University Press.Google Scholar
Crompton, D. W. T., & Whitfield, P. J., (1968). The course of infection and egg production of Polymorphus minutus (Acanthocephala) in domestic ducks. Parasitology 58, 231–46.CrossRefGoogle ScholarPubMed
Dobb, M. G., (1965). α-Helix in fibrous proteins. Nature, 207, 293.CrossRefGoogle Scholar
Filshie, B. K., & Rogers, G. B., (1961). The fine structure of α-keratin. Journal of Molecular Biology 3, 784–6.CrossRefGoogle ScholarPubMed
Fraser, R. D. B., Macrae, T. P., & Rogers, G. E., (1962). Molecular organisation of α-keratin Nature 193, 1052–5.CrossRefGoogle ScholarPubMed
Goodey, J. B., (1957). Laboratory Methods for Work with Plant and Soil Nematodes. Technical Bulletin of the Ministry of Agriculture, Fisheries and Food, 2. London: H.M.S.O.Google Scholar
Grabda-Kazubska, B., (1964). Observations on the armature of embryos of acanthocephalans. Ada Parasitologica Polonica 12, 215–31.Google Scholar
Kaiser, J. E., (1893). Die Acanthocephalen und ihre Entwicklung. Bibliotheca zoologica 11, Heft 7.Google Scholar
Matoltsy, A. G., (1962). Structural and chemical properties of keratin forming tissues. In Fundamentals of Keratinization. Eds. Butcher, E. O., and Sognnaes, R. F.. Pub. No. 70. Washington, D.C.: American Association for the Advancement of Science.Google Scholar
Matoltsy, A. G., (1964). Amino acid composition of prekeratin. Nature 204, 380–1.CrossRefGoogle Scholar
Mazia, D., Brewer, P., & Alfert, M., (1953). Cytochemical staining and measurement of protein with mercuric bromophenol blue. Biological Bulletin 104, 5767.CrossRefGoogle Scholar
Mercer, E. H., Rogers, G. E., Mongers, B. L., & Roth, S. I., (1964). A suggested nomenclature for fine structural components of keratin. Nature 201, 367–8.CrossRefGoogle ScholarPubMed
Meyer, A., (1933). Acanthocephala. Bronn's Klassen und Ordnungen des Tierreichs, Band 4, Abt. 2, Buch 2.Google Scholar
Monné, L., (1964). Chemie und Bildung der Embryophoren von Polymorphus botulus. Van Cleave (Acanthocephala). Zeitschrift für Parasitenkunde 25, 148–56.CrossRefGoogle Scholar
Monné, L., & Hönig, G., (1954). On the embryonic envelopes of Polymorphus botulus and P. minutus. Arkiv for zoologi, Ser. 2 7, 257–60.Google Scholar
Pantin, C. F. A., (1964). Notes on Microscopical Technique for Zoologists. Cambridge University Press.Google Scholar
Pearse, A. G. E., (1960). Histochemistry. Theoretical and Applied. 2nd edition. London: J. and A. Churchill, Ltd.Google Scholar
Petrochenko, V. I., (1958). Acanthocephala of Domestic and Wild Animals II. (in Russian). Moskva: Akad. Nauk. S.S.S.R.Google Scholar
Rogers, G. E., (1959). Electron microscopy of wool. Journal of infrastructure Research 2, 309–30.Google ScholarPubMed
Seifter, S., & Gallop, P. M., (1966). The structure Proteins. In The Proteins: Composition, Structure and Function. 2nd edition, Vol. 4, Ed. Neurath, H.. New York: Academic Press Inc.Google Scholar
Stranack, F. R., (1972). The fine structure of the acanthor shell of Pomphorhynchus laevis (Acanthocephala). Parasitology 64, 187–90.CrossRefGoogle ScholarPubMed
West, A. J., (1963). A preliminary investigation of the embryonic layers surrounding the acanthors of Acanthocephalus jacksoni and Echinorhynchus gadi. Journal of Parasitology 49, suppl., 42–3.Google Scholar
West, A. J., (1964). The acanthor membranes of two species of Acanthocephala. Journal of Parasitology 50, 731–4.CrossRefGoogle Scholar
Whitfield, P. J., (1971). Spermiogenesis and spermatozoan ultrastructure in Polymorphus minutus (Acanthocephala). Parasitology 62, 415–30.CrossRefGoogle Scholar
Wright, R. T., (1971). The egg envelopes of Moniliformis dubius. Journal of Parasitology 57, 122–31.CrossRefGoogle Scholar
Yamaguti, S., (1935). Studies on the helminth fauna of Japan. Part 8. Acanthocephala I. Japanese Journal of Zoology 6, 247–78.Google Scholar
Yamaguti, S., (1939). Studies on the helminth fauna of Japan. Part 29. Acanthocephala II. Japanese Journal of Zoology 8, 317–51.Google Scholar