Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T09:40:49.882Z Has data issue: false hasContentIssue false

Effects of a novel anti-exospore monoclonal antibody on microsporidial Nosema bombycis germination and reproduction in vitro

Published online by Cambridge University Press:  19 June 2007

F. ZHANG
Affiliation:
Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
X. LU*
Affiliation:
Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
V. S. KUMAR
Affiliation:
P.G. Department of Studies and Research in Sericulture, Karnatak University, Dharwad-580 003, India
H. ZHU
Affiliation:
Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
H. CHEN
Affiliation:
Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
Z. CHEN
Affiliation:
Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
J. HONG
Affiliation:
Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
*
*Corresponding author: Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China. Fax: +86 571 86971697. E-mail: [email protected]

Summary

A monoclonal antibody (mAb) 3C2, against an exospore protein of the microsporidium Nosema bombycis (N. bombycis) was prepared, and its effects on microsporidial germination and reproduction in vitro were studied. MAb 3C2 was effective in inhibiting the germination and subsequent infection of Bombyx mori cells compared to the control mAb. The antigen was isolated by 2-dimensional gel electrophoresis. Immunoblotting revealed it to be an 84 kDa protein corresponding to pI (7·2) on the 2-D gel. The present results suggest that the antibodies can be used for diagnostic purposes and for developing new therapeutic strategies in controlling microsporidian diseases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agre, P. and Kozono, D. (2003). Aquaporin water channels: molecular mechanisms for human diseases. FEBS Letters 555, 7278.CrossRefGoogle ScholarPubMed
Baker, M. D., Vossbrinck, C. R., Becnel, J. J. and Andreadis, T. G. (1998). Phylogeny of Amblyospora (Microsporida: Amblyosporidae) and related genera based on small subunit ribosomal DNA data: a possible example of host parasite cospeciation. Journal of Invertebrate Pathology 71, 199206.CrossRefGoogle Scholar
Becnel, J. J. and Andreadis, T. G. (1999). Microsporidia in insects. In The Microsporidia and Microsporidiosis (ed. Wittner, M. and Weiss, L. M.), pp. 447501. American Society for Microbiology Press, Washington, D.C.Google Scholar
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Canning, E. U., Curry, A., Cheney, S., Lafranchi-Tristem, N. J. and Haque, M. A. (1999). Vairimorpha imperfecta n.sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology 119, 273286. doi: 10.1017/S0031182099004734.CrossRefGoogle ScholarPubMed
Dall, D. J. (1983). A theory for the mechanism of polar filament extrusion in the Microspora. Journal of Molecular Biology 105, 647659.Google ScholarPubMed
Enriquez, F. J., Bradley-Dunlop, D. and Joens, L. (1991). Increased proportion of antigen-specific antibody-producing hybridomas following an in vitro immunization with in vivo immunized mouse spleen cells. Hybridoma 10, 745751.CrossRefGoogle Scholar
Enriquez, F. J., Ditrich, O., Palting, J. D. and Smith, K. (1997). Simple diagnosis of Encephalitozoon sp. microsporidial infections by using a panspecific anti-exospore monoclonal antibody. Journal of Clinical Microbiology 35, 724729.CrossRefGoogle Scholar
Enriquez, F. J., Wagner, G., Fragoso, M. and Ditrich, O. (1998). Effects of an anti-exospore monoclonal antibody on microsporidial development in vitro. Parasitology 117, 515520. doi: 10.1017/S0031182098003345.CrossRefGoogle ScholarPubMed
Frixione, E., Ruiz, L., Cerbon, J. and Undeen, A. H. (1997). Germination of Nosema algerae (Microspora) spores: conditional inhibition by D2O, ethanol and Hg2+ suggests dependence of water influx upon membrane hydration and specific transmembrane pathways. Journal of Eukaryotic Microbiology 44, 109116.Google Scholar
Ghosh, K., Cappiello, C. D., McBride, S. M., Occi, J. L., Cali, A., Takvorian, P. M., McDonald, T. V. and Weiss, L. M. (2006). Functional characterization of a putative aquaporin from Encephalitozoon cuniculi, a microsporidia pathogenic to humans. International Journal for Parasitology 36, 5762. doi: 10.1111/j.15507408.2006.00178.x.CrossRefGoogle ScholarPubMed
Hollister, W. S. and Canning, E. U. (1987). An enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to Encephalitozoon cuniculi and its use in determination of infections in man. Parasitology 94, 209219.CrossRefGoogle ScholarPubMed
James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A., Stajich, J. E., Hosaka, K., Sung, G. H., Johnson, D., O'Rourke, B., Crocket, M., Binder, M., Curtis, J. M., Slot, J. C., Wang, Z., Wilson, A. W., Schußler, A., Longcore, J. E., O'Donnell, K., Mozley-Standridge, S., Porter, D., Letcher, P. M., Powell, M. J., Taylor, J. W., White, M. M., Griffith, G. W., Davies, D. R., Humber, R. A., Morton, J. B., Sugiyama, J., Rossman, A. Y., Rogers, J. D., Pfister, D. H., Hewitt, D., Hansen, K., Hambleton, S., Shoemaker, R. A., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Spotts, R. A., Serdani, M., Crous, P. W., Hughes, K. W., Matsuura, K., Langer30, E., Langer, G., Untereiner, W. A., Lucking, R., Budel, B., Geiser, D. M., Aptroot, A., Diederich, P., Schmitt, I., Schultz, M., Yahr, R., Hibbett, D. S., Lutzoni, F., McLaughlin, D. J., Spatafora, J. W. and Vilgalys, R. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443, 818822. doi: 10.1038/nature 05110.CrossRefGoogle ScholarPubMed
Mei, L. L. and Jin, W. (1989). Studies on Nosema bombycis and Nosema hemerophila. Acta Sericologica Sinica 15, 135138.Google Scholar
Naegli, C. (1857). Über die neue Krankheit der Seidenraupe und verwandte Organismen. (Versammlung Deutscher Naturforscher und Ärzte, Bonn, 21 September 1857.) Botanischer Zeitschrift 15, 760761.Google Scholar
Sak, B., Saková, K. and Ditrich, O. (2004). Effects of a novel anti-exospore monoclonal antibody on microsporidial development in vitro. Parasitology Research 92, 7480. doi: 10.1007/s00436-003-0988-1.CrossRefGoogle ScholarPubMed
Sprague, V. and Becnel, J. J. (1998). Note on the name-author-date combination for the taxon microsporidies Balbiani, 1882, when ranked as a phylum. Journal of Invertebrate Pathology 71, 9194. doi: 10.1006/jipa.4702.CrossRefGoogle ScholarPubMed
Steinhaus, E. A. and Hughes, K. M. (1949). Two newly described species of microsporidia from the potato tuberworm, Gnorimoschema operculella (Zeller) (Lepidoptera, Gelechiidae). Journal of Parasitology 35, 6774.CrossRefGoogle ScholarPubMed
Undeen, A. H. (1990). A proposed mechanism for the germination of microsporidian (Protozoa, Microspora) spores. The Journal of Theoretical Biology 142, 223235.CrossRefGoogle Scholar
Undeen, A. H. and Avery, S. W. (1984). Germination of experimentally nontransmissible microsporidia. Journal of Invertebrate Pathology 43, 299301.CrossRefGoogle Scholar
Undeen, A. H. and Avery, S. W. (1988). Spectrophotometric measurement of Nosema algerae (Microspora: Nosematidae) spore germination rate. Journal of Invertebrate Pathology 52, 253258.CrossRefGoogle Scholar
Undeen, A. H. and Vander Meer, R. K. (1999). Microsporidian intrasporal sugars and their role in germination. Journal of Invertebrate Pathology 73, 294302.CrossRefGoogle ScholarPubMed
Verkman, A. S. and Mitra, A. K. (2000). Structure and function of aquaporin water channels. American Journal of Physiology 278, 1328.Google ScholarPubMed
Weidner, E. and Byrd, W. (1982). The microsporidian spore invasion tube. II. Role of calcium in the activation of invasion tube discharge. The Journal of Cell Biology 93, 970975.CrossRefGoogle ScholarPubMed