Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T07:58:26.912Z Has data issue: false hasContentIssue false

Effectiveness of a single application of 0·25% fipronil solution for the treatment of hirstiellosis in captive green iguanas (Iguana iguana): an open-label study

Published online by Cambridge University Press:  31 May 2013

RANIA FARMAKI
Affiliation:
Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutyra Str. 11, GR-54627, Thessaloniki, Greece
CHRISA SIMOU
Affiliation:
School of Biology, University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
ELIAS PAPADOPOULOS
Affiliation:
Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece
ALEXANDER F. KOUTINAS
Affiliation:
Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutyra Str. 11, GR-54627, Thessaloniki, Greece
MANOLIS N. SARIDOMICHELAKIS*
Affiliation:
Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Trikalon Str. 224, GR-43100 Karditsa, Greece
*
*Corresponding author: Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Trikalon Str. 224, GR-43100 Karditsa, Greece. E-mail: [email protected]

Summary

Hirstiella spp. are common ectoparasites of captive green iguanas (Iguana iguana). Suggested treatments are empirical and some of them are of low efficacy and potentially toxic. The objective of this open-label study was to investigate the short-term efficacy and safety of a single application of 0·25% fipronil solution for the treatment of hirstiellosis. The skin of 50 green iguanas was thoroughly examined with the aid of bright light and magnifying lenses. A total of 21 iguanas were found to be infested, harbouring 1–24 mites (median: 5). All 35 mites collected from 17 iguanas were identified as Hirstiella sp. Both infested and non-infested lizards, sharing the same enclosure, were carefully wiped with 0·25% fipronil solution. The safety and the efficacy of the treatment were evaluated after 2 days in 47/50 (94%) and 7 days in 29/50 (58%) iguanas. Compared with pre-treatment levels, the parasitic load did not changed significantly on the second day but was significantly lower on day 7 (P = 0·006). No adverse reactions were noticed. Based on these results a single whole-body application of 0·25% fipronil solution can be considered a safe and effective treatment for the reduction of parasitic burden in captive green iguanas infested by Hirstiella sp. mites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adeyemi, I. G. and Adedeji, O. B. (2006). Acute toxicity of acaricide in lizards (Agama agama) inhabiting dog kennel in Ibadan, Nigeria: an environmental hazard in urban vector control. Environmentalist 26, 281283. doi: 10.1007/s10669-006-0156-0.CrossRefGoogle Scholar
Arnold, E. N. (1986). Mite pockets of lizards, a possible means of reducing damage by ectoparasites. Biological Journal of the Linnean Society 29, 121.CrossRefGoogle Scholar
Bannert, B., Karaca, H. Y. and Wohltmann, A. (2000). Life cycle and parasitic interaction of the lizard-parasitizing mite Ophionyssus galloticolus (Acari: Gamasida: Macronyssidae), with remarks about the evolutionary consequences of parasitism in mites. Experimental and Applied Acarology 24, 597613.CrossRefGoogle ScholarPubMed
Bram, R. A. and George, J. E. (2000). Introduction of nonindigenous arthropod pests of animals. Journal of Medical Entomology 37, 18.CrossRefGoogle ScholarPubMed
Corn, J. L., Mertins, J. W., Hanson, B. and Snow, S. (2011). First reports of ectoparasites collected from wild-caught exotic reptiles in Florida. Journal of Medical Entomology 48, 94100.CrossRefGoogle ScholarPubMed
Curtis, C. F. (2004). Current trends in the treatment of Sarcoptes, Cheyletiella and Otodectes mite infestations in dogs and cats. Veterinary Dermatology 15, 108114.CrossRefGoogle ScholarPubMed
Delfino, M. M., Ribeiro, S. C., Furtado, I. P., Anjos, L. A. and Almeida, W. O. (2011). Pterygosomatidae and Trombiculidae mites infesting Tropidurus hispidus (Spix, 1825) (Tropiduridae) lizards in northeastern Brazil. Brazilian Journal of Biology 71, 549555.CrossRefGoogle ScholarPubMed
Fèvre, E. M., Bronsvoort, B. M., Hamilton, K. A. and Cleaveland, S. (2006). Animal movements and the spread of infectious diseases. Trends in Microbiology 14, 125131.CrossRefGoogle ScholarPubMed
Gant, D. B., Chalmers, A. E., Wolff, M. A., Hoffman, H. B. and Bushey, D. F. (1998). Fipronil: action at the GABA receptor. Reviews in Toxicology 2, 147156.Google Scholar
Gazyağcı, S., Aktaş, M. S. and Sari, B. (2011). The first record of the mite (Histiella sp.) on a green iguana from Turkey and its therapy with fipronil – a case report. Veterinarski Arhiv 81, 793797.Google Scholar
Goldberg, S. R. and Bursey, C. R. (1991 a). Duration of attachment by mites and ticks on the iguanid lizards Sceloporus graciosus and Uta stansburiana. Journal of Wildlife Diseases 27, 719722.CrossRefGoogle ScholarPubMed
Goldberg, S. R. and Bursey, C. R. (1991 b). Integumental lesions caused by ectoparasites in a wild population of the side-blotched lizard (Uta stansburiana). Journal of Wildlife Diseases 27, 6873.CrossRefGoogle Scholar
Harvey-Clark, C. J. (1995). Common dermatologic problems in pet Reptilia. Seminars in Avian and Exotic Pet Medicine 4, 205219.CrossRefGoogle Scholar
Hellebuyck, T., Pasmans, F., Haesebrouck, F. and Martel, A. (2012). Dermatological diseases in lizards. Veterinary Journal 193, 3845. doi: 10.1016/j.tvjl.2012.02.001.CrossRefGoogle ScholarPubMed
Hoppmann, E. and Barron, H. W. (2007). Dermatology in reptiles. Journal of Exotic Pet Medicine 16, 210224.CrossRefGoogle Scholar
Ippen, R. and Zwart, P. (1996). Infectious and parasitic disease of captive reptiles and amphibians, with special emphasis on husbandry practices which prevent or promote diseases. Revue scientifique et technique (International Office of Epizootics) 15, 4354.Google ScholarPubMed
Koutinas, A. F., Saridomichelakis, M. N., Soubasis, N., Bornstein, S. and Koutinas, C. K. (2001). Treatment of canine sarcoptic mange with fipronil spray: a field trial. Australian Veterinary Practitioner 31, 115119.Google Scholar
Mader, D. R. (1995). Acariasis. In Reptile Medicine and Surgery (ed. Mader, D. R.), pp. 341346. W.B. Saunders, Philadelphia, PA, USA.Google Scholar
Mader, D. R., Houston, R. S. and Frye, F. L. (1986). Hirstiella trombidiiformis infestation in a colony of chuckwallas. Journal of the American Veterinary Medical Association 189, 11381139.Google Scholar
Marano, N., Arguin, P. M. and Pappaioanou, M. (2007). Impact of globalization and animal trade on infectious disease ecology. Emerging Infectious Diseases 13, 18071809. doi: 10.3201/eid1312.071276.CrossRefGoogle ScholarPubMed
McCoy, C., Broce, A. B. and Dryden, M. W. (2008). Flea blood feeding patterns in cats treated with oral nitenpyram and the topical insecticides imidacloprid, fipronil and selamectin. Veterinary Parasitology 156, 293301. doi: 10.1016/j.vetpar.2008.04.028.CrossRefGoogle ScholarPubMed
Mitchell, M. and Colombini, S. (2003). Reptiles. In BSAVA Manual of Small Animal Dermatology (ed. Foster, A. and Foil, C.), pp. 269275. BSAVA, Gloucester, UK.Google Scholar
Newell, I. M. and Ryckman, R. E. (1964). Hirstiella pyriformis sp. n. (Acari, Pterygosomidae), a new parasite of lizards from Baja California. Journal of Parasitology 50, 163171.CrossRefGoogle Scholar
Oliver, J. H. J., Hayes, M. P., Keirans, J. E. and Lavender, D. R. (1993). Establishment of the foreign parthenogenetic tick Amblyomma rotundatum (Acari: Ixodidae) in Florida. Journal of Parasitology 79, 786790.CrossRefGoogle ScholarPubMed
Paredes-León, R. and Morales-Malacara, J. B. (2009). A new species of the genus Hirstiella (Acari: Prostigmata: Pterygosomatidae) parasitic on Phyllodactylus bordai (Reptilia: Squamata: Gekkonidae) in Mexico. Journal of Medical Entomology 46, 442450.CrossRefGoogle Scholar
Pasmans, F., Blahak, S., Martel, A. and Pantchev, N. (2008). Introducing reptiles into a captive collection: the role of the veterinarian. Veterinary Journal 175, 5368.CrossRefGoogle ScholarPubMed
Peveling, R. and Demba, S. A. (2003). Toxicity and pathogenicity of Metarhizium anisopliae var. acridum (Deuteromycotina, Hyphomycetes) and fipronil to the fringe-toed lizard Acanthodactylus dumerili (Squamata: Lacertidae). Environmental Toxicology and Chemistry 22, 14371447.Google Scholar
Rendle, D. I., Cottle, H. J., Love, S. and Hughes, K. J. (2007). Comparative study of doramectin and fipronil in the treatment of equine chorioptic mange. Veterinary Record 161, 335338.CrossRefGoogle ScholarPubMed
Schultz, H. (1975). Human infestation by Ophionyssus natricis snake mite. British Journal of Dermatology 93, 695697.CrossRefGoogle ScholarPubMed
Stahl, S. J. (2003). Pet lizard conditions and syndromes. Seminars in Avian and Exotic Pet Medicine 12, 162182.CrossRefGoogle Scholar
Széll, Z., Sréter, T. and Varga, I. (2001). Ivermectin toxicosis in a chameleon (Chamaeleo senegalensis) infected with Foleyella furcata. Journal of Zoo and Wildlife Medicine 32, 115117.Google Scholar
Walter, D. E. and Shaw, M. (2002). First record of the mite Hirstiella diolii Baker (Prostigmata: Pterygosomatidae) from Australia, with a review of mites found on Australian lizards. Australian Journal of Entomology 41, 3034.CrossRefGoogle Scholar
White, S. D., Bourdeau, P., Bruet, V., Kass, P. H., Tell, L. and Hawkins, M. G. (2011). Reptiles with dermatological lesions: a retrospective study of 301 cases at two university veterinary teaching hospitals (1992–2008). Veterinary Dermatology 22, 150161. doi: 10.1111/j.1365-3164.2010.00926.x.CrossRefGoogle Scholar