Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:24:25.507Z Has data issue: false hasContentIssue false

Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole

Published online by Cambridge University Press:  29 March 2006

R. J. MARTIN
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
S. VERMA
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
M. LEVANDOSKI
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
C. L. CLARK
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
H. QIAN
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
M. STEWART
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
A. P. ROBERTSON
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA

Abstract

Here we review recent studies on the mode of action of the cholinergic anthelmintics (levamisole, pyrantel etc.). We also include material from studies on the free living nematode Caenorhabditis elegans. The initial notion that these drugs act on a single receptor population, while attractive, has proven to be an oversimplification. In both free living and parasitic nematodes there are multiple types of nicotinic acetylcholine receptor (nAChR) on the somatic musculature. Each type has different (sometimes subtly so) pharmacological properties. The implications of these findings are: (1) combinations of anthelmintic that preferentially activate a broad range of nAChR types would be predicted to be more effective; (2) in resistant isolates of parasite where a subtype has been lost, other cholinergic anthelmintics may remain effective. Not only are there multiple types of nAChR, but relatively recent research has shown these receptors can be modulated; it is possible to increase the response of a parasite to a fixed concentration of drug by altering the receptor properties (e.g. phosphorylation state). These findings offer a potential means of increasing efficacy of existing compounds as an alternative to the costly and time consuming development of new anthelmintic agents.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ACEVES, J., ERLIJI, D. & MARTINEZ-MARNON, R. ( 1970). The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. British Journal of Pharmacology 38, 602607.CrossRefGoogle Scholar
AJUH, P. M., COWELL, P., DAVEY, M. J. & SHEVDE, S. ( 1994). Cloning of a cDNA encoding a putative nicotinic acetylcholine receptor subunit of the human filarial parasite Onchocerca volvulus. Gene 144, 127129.CrossRefGoogle Scholar
ALBERT, A. ( 1985). Selective Toxicity: The Physico-Chemical Basis of Therapy (Seventh edition), 206265. Chapman and Hall, London and New York.CrossRef
AUBRY, M. L., COWELL, P., DAVEY, M. J. & SHEVDE, S. ( 1970). Aspects of the pharmacology of new anthelmintics: pyrantel. British Journal of Pharmacology 38, 332344.CrossRefGoogle Scholar
BLAXTER, M. L. ( 2001). Molecular analysis of nematode evolution. In Parasitic Nematodes, Molecular Biology, Biochemistry and Immunology ( eds. Kennedy, M. W. & Harnett, W.) pp. 124. CABI International, Wallingford.CrossRef
BREJC, K., VAN dijk, W. J., KLAASSEN, R. V., SCHUURMANS, M., VAN DER OOST, J. & SMIT, A. B. ( 2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269276.CrossRefGoogle Scholar
CHANGEAUX, J.-P., DEVILLERS-thiery, A. & CHEMOUILLI, P. ( 1996). Acetylcholine receptor: An allosteric protein. Science 225, 13351345.Google Scholar
CORRINGER, P. J., BERTRAND, S., BOHLER, S., EDELSTEIN, S. J., CHANGEUX, J. P. & BERTRAND, D. ( 1998). Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. Journal of Neuroscience 18, 648657.Google Scholar
CULETTO, E., BAYLIS, H. A., RICHMOND, J. E., JONES, A. K., FLEMING, J. T., SQUIRE, M. D., LEWIS, J. A. & SATTELLE, D. B. ( 2004). The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor α subunit. Journal of Biological Chemistry 279, 4247642483.CrossRefGoogle Scholar
DALE, V. M. E. & MARTIN, R. J. ( 1995). Oxantel-activated single-channel currents in the muscle membrane of Ascaris suum. Parasitology 110, 437448.CrossRefGoogle Scholar
EVANS, A. M. & MARTIN, R. J. ( 1996). Activation and cooperative multi-ion block of single nicotinic-acetylcholine channel currents of Ascaris muscle by the tetrahydropyrimidine anthelmintic, morantel. British Journal of Pharmacology 118, 11271140.CrossRefGoogle Scholar
FLEMING, J. T., SQUIRE, M. D., BARNES, T. M., TORNOE, C., MATSUDA, K., AHNN, J., FIRE, A., SULSTON, J. E., BARNARD, E. A., SATTELLE, D. B. & LEWIS, J. A. ( 1997). Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. Journal of Neuroscience 17, 58435857.Google Scholar
FUCILE, S. ( 2004). Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35, 18.CrossRefGoogle Scholar
HOEKSTRA, R., VISSER, A., WILEY, L. J., WEISS, A. S., SANGSTER, N. C. & ROOS, M. H. ( 1997). Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Molecular and Biochemical Parasitology 84, 179187.CrossRefGoogle Scholar
HUGANIR, R. L., DELCOUR, A. H., GREENGARD, P. & HESS, G. P. ( 1986). Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321, 774776.CrossRefGoogle Scholar
JONES, A. K. & SATTELLE, D. B. ( 2004). Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26, 3949.CrossRefGoogle Scholar
KHIROUG, L., SOKOLOVA, E., GINIATULLIN, R., AFZALOV, R. & NISTRI, A. ( 1998). Recovery from desensitization of neuronal nicotinic acetylcholine receptors of rat chromaffin cells is modulated by intracellular calcium through distinct second messengers. Journal of Neuroscience 18, 24582466.Google Scholar
LEVANDOSKI, M. M., ROBERTSON, A. P., KUIPER, S. & MARTIN, R. J. ( 2005). Single-channel recordings and discriminant analysis show that nicotine and levamisole selectively activate distinct subtypes of acetylcholine receptor on muscle of Ascaris suum. International Journal for Parasitology 35, 925934.CrossRefGoogle Scholar
MARTIN, R. J. ( 1982). Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. British Journal of Pharmacology 77, 255265.CrossRefGoogle Scholar
MARTIN, R. J., BAI, G., CLARK, C. L. & ROBERTSON, A. P. ( 2003 a). Methyridine (2-[2-methoxyethyl]-pyridine) and levamisole activate different ACh receptor subtypes in nematode parasites: a new lead for levamisole-resistance. British Journal of Pharmacology 140, 10681076.Google Scholar
MARTIN, R. J., CLARK, C. L., TRAILOVIC, S. M. & ROBERTSON, A. P. ( 2004). Oxantel Is an N-type (methyridine and nicotine) agonist not An L-type (levamisole & pyrantel) agonist: classification of cholinergic anthelmintics. International Journal for Parasitology 34, 10831090.CrossRefGoogle Scholar
MARTIN, R. J., MURRAY, I., ROBERTSON, A. P., BJORN, H. & SANGSTER, N. C. ( 1998). Anthelmintics and ion-channels: After a puncture use a patch. International Journal of Parasitology 28, 849862.CrossRefGoogle Scholar
MARTIN, R. J., PURCELL, J., DAY, T. A. & ROBERTSON, A. P. ( 2003 b). Neurotransmitters. In Molecular Medical Parasitology ( eds. Marr, J. J., Nilsen, T. W. & Komuniecki, R. W.), pp. 359394. Academic Press, London.
MARTIN, R. J., ROBERTSON, A. P. & BJORN, H. ( 1997 a). Target sites of anthelmintics. Parasitology 114, S111S124.Google Scholar
MARTIN, R. J., ROBERTSON, A. P., BJORN, H. & SANGSTER, N. C. ( 1997 b). Heterogeneous levamisole receptors: a single-channels study of nicotinic acetylcholine receptors from Oesophagostomum dentatum. European Journal of Pharmacology 322, 249257.Google Scholar
MARTIN, R. J., ROBERTSON, A. P. & WOLSTENHOLME, A. J. ( 2002). Mode of action of the macrocyclic lactones. In Macrocyclic Lactones in Antiparasitic Therapy ( eds. Vercruysse, J. & Rew, R. S.), pp. 125140. CAB International, Wallingford.CrossRef
McGEHEE, D. S. & ROLE, L. W. ( 1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology 57, 521546.CrossRefGoogle Scholar
PENNINGTON, A. J. & MARTIN, R. J. ( 1990). A patch-clamp study of acetylcholine-activated ion channels in Ascaris suum muscle. Journal of Experimental Biology 154, 201221.Google Scholar
RAYES, D., DE ROSA, J. M., BARTOS, M. J., BARTOS, M. & BOUZAT, C. ( 2004). Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole. Journal of Biological Chemistry 279, 3637236381.CrossRefGoogle Scholar
RAYMOND, V., MONGAN, N. P. & SATTELLE, D. B. ( 2000). Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken alpha 7 and ACR-16 from the nematode Caenorhabditis elegans. Neuroscience 101, 785791.CrossRefGoogle Scholar
REINITZ, C. A., HERFEL, H. G., MESSINGER, L. A. & STRETTON, A. O. W. ( 2000). Changes in locomotory behavior and cAMP produced in Ascaris suum by neuropeptides from Ascaris suum or Caenorhabditis elegans. Molecular and Biochemical Parasitology 111, 185197.CrossRefGoogle Scholar
RICHMOND, J. E. & JORGENSEN, E. M. ( 1999). One GABA and two acetylcholine receptor functions at the C. elegans neuromuscular junction. Nature Neuroscience 19, 196199.Google Scholar
ROBERTSON, A. P., BJORN, H. E. & MARTIN, R. J. ( 1999). Resistance to levamisole resolved at the single-channel level. FASEB Journal 13, 749760.Google Scholar
ROBERTSON, A. P., BJORN, H. E. & MARTIN, R. J. ( 2000). Pyrantel resistance alters nematode nicotinic acetylcholine receptor single-channel properties. European Journal of Pharmacology 394, 18.CrossRefGoogle Scholar
ROBERTSON, A. P., CLARK, C. L., BURNS, T. A., THOMPSON, D. P., GEARY, T. G., TRAILOVIC, S. M. & MARTIN, R. J. ( 2002). Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. Journal of Pharmacology and Experimental Therapeutics 302, 853860.CrossRefGoogle Scholar
ROBERTSON, S. J. & MARTIN, R. J. ( 1993). Levamisole-activated single-channel currents from muscle of the nematode parasite Ascaris suum. British Journal of Pharmacology 108, 170178.CrossRefGoogle Scholar
ROBERTSON, S. J., PENNINGTON, A. J., EVANS, A. M. & MARTIN, R. J. ( 1992). Pyrantel activated single-channel currents in the nematode parasite Ascaris suum. British Journal of Pharmacology 107, P 154.Google Scholar
SANGSTER, N. C., DAVIS, C. W. & COLLINS, G. H. ( 1991). Effects of cholinergic drugs on longitudinal contraction in levamisole-susceptible and levamisole-resistant Haemonchus contortus. International Journal for Parasitology 21, 689695.CrossRefGoogle Scholar
SHERIFF, J. C., KOTZE, A. C., SANGSTER, N. C. & MARTIN, R. J. ( 2002). Effects of macrocyclic lactones on feeding and pharyngeal pumping in Trichostongylus colubriformis in vitro. Parasitology 125, 477484.Google Scholar
SUSWAM, E. A., ROSS, C. A. & MARTIN, R. J. ( 2003). Changes in adenosine transport associated with melaminophenyl arsenical (Mel CY) resistance in Trypanosoma evansi: down-regulation and affinity changes of the P2 transporter. Parasitology 127, 543549.CrossRefGoogle Scholar
SUSWAM, E. A., TAYLOR, D. W., ROSS, C. A. & MARTIN, R. J. ( 2001). Changes in properties of adenosine transporters in Trypanosoma evansi and modes of selection of resistance to the melaminophenyl arsenical drug, Mel Cy. Veterinary Parasitology 102, 193208.CrossRefGoogle Scholar
TOUROUTINE, D. V., FOX, R. M., STETINA, S. E., BURDINA, A., MILLER, D. M. & RICHMOND, J. E. ( 2005). Acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the C. elegans neuromuscular junction. Journal of Biological Chemistry. In press.Google Scholar
TOWERS, P. R., EDWARDS, B., RICHMOND, J. E. & SATTELLE, D. B. ( 2005). The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. Journal of Neurochemistry 93, 19.CrossRefGoogle Scholar
TRAILOVIC, S. M., CLARK, C. L., ROBERTSON, A. P. & MARTIN, R. J. ( 2005). Brief application of AF2 produces long lasting potentiation of nAChR responses in Ascaris. Molecular and Biochemical Parasitology 139, 5164.CrossRefGoogle Scholar
TRAILOVIC, S. M., ROBERTSON, A. P., CLARK, C. L. & MARTIN, R. J. ( 2002). Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in Ascaris suum suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. Journal of Experimental Biology 205, 39793988.Google Scholar
VARADY, M., BJORN, H., CRAVEN, J. & NANSEN, P. ( 1997). In vitro characterization of lines of Oesophagostomum dentatum selected or not selected for resistance to pyrantel, levamisole and ivermectin. International Journal for Parasitology 27, 7781.CrossRefGoogle Scholar
WILEY, L. J., FERRARA, D. R., SANGSTER, N. C. & WEISS, A. S. ( 1997). The nicotinic acetylcholine alpha-subunit gene tar-1 is located on the x chromosome but its coding sequence is not involved in levamisole resistance in an isolate of Trichostrongylus colubriformis. Molecular and Biochemical Parasitology 90, 415422.CrossRefGoogle Scholar