Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T16:35:52.557Z Has data issue: false hasContentIssue false

Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda)

Published online by Cambridge University Press:  07 July 2014

K. OGAWA*
Affiliation:
Meguro Parasitological Museum, Shimo-meguro 4-1-1, Meguro, Tokyo 153-0064, Japan
*
* Corresponding author: Meguro Parasitological Museum, Shimo-meguro 4-1-1, Meguro, Tokyo 153-0064, Japan. E-mail: [email protected]

Summary

Mariculture is a rapidly developing industrial sector. Generally, fish are maintained in net cages with high density. Cage culture systems allow uncontrolled flow of sea water containing potentially infectious stages of fish parasites. In such culture conditions, prevention of such parasitic infections is difficult for parasites with life cycles that complete within culture sites, among which monogeneans and blood flukes are the most important platyhelminthes. Intense monogenean infections induce respiratory and osmo-regulatory dysfunctions. A variety of control measures have been developed, including freshwater bath treatment and chemotherapy. The potential to control monogenean infections through selective breeding, modified culture techniques to avoid infection, and general fish health management are discussed. It should be noted that mariculture conditions have provided some host-specific monogeneans with a chance to expand their host ranges. Blood flukes sometimes induce mass mortality among farmed fish. In-feed administration of praziquantel is the best solution to treat infected fish. Some cases are described that show how international trade in marine fish has resulted in the spread of hitherto unknown parasites into indigenous farmed and wild fish.

Type
Mariculture
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiken, H. M., Hayward, C. J. and Nowak, B. F. (2006). An epizootic and its decline of a blood fluke, Cardicola forsteri, in farmed southern bluefin tuna. Thunnus maccoyii. Aquaculture 254, 4045.CrossRefGoogle Scholar
Aiken, H. M., Hayward, C. J., Crosbie, F., Watts, M. and Nowak, B. F. (2008). Serological evidence of an antibody response in farmed southern bluefin tuna naturally infected with the blood fluke Cardicola forsteri . Fish & Shellfish Immunology 25, 6675.CrossRefGoogle ScholarPubMed
Aiken, H., Hayward, C., Cameron, A. and Nowak, B. (2009). Simulating blood fluke, Cardicola forsteri, infection in farmed southern bluefin tuna, Thunnus maccoyii, using stochastic models. Aquaculture 293, 204210.CrossRefGoogle Scholar
Anshary, H. and Ogawa, K. (2001). Microhabitats and mode of attachment of Neoheterobothrium hirame, a monogenean parasite of Japanese flounder. Fish Pathology 36, 2126.CrossRefGoogle Scholar
Anshary, H., Ogawa, K., Higuchi, M. and Fujii, T. (2001). A study of long-term change in summer infection levels of Japanese flounder Paralichthys olivaceus with the monogenean Neoheterobothrium hirame in the central Sea of Japan, with an application of a new technique for collecting small parasites from the gill filaments. Fish Pathology 36, 2732.CrossRefGoogle Scholar
Anshary, H., Yamamoto, E., Miyanaga, T. and Ogawa, K. (2002). Infection dynamics of the monogenean Neoheterobothrium hirame infecting Japanese flounder in the western Sea of Japan. Fish Pathology 37, 131140.CrossRefGoogle Scholar
Antonelli, L., Quilichini, Y. and Marchand, B. (2010). Sparicotyle chrysophrii (Van Beneden and Hesse 1863) (Monogenea: Polyopisthocotylea) parasite of cultured gilthead sea bream Sparus aurata (Linnaeus 1758) (Pisces: Teleostei) from Corsica: ecological and morphological study. Parasitology Research 107, 389398.CrossRefGoogle Scholar
Beveridge, M. C. M. (2002). Overview of cage culture. In Diseases and Disorders of Finfish in Cage Culture (ed. Woo, P. T. K., Bruno, D. W. and Lim, L. H. S.), pp. 4160. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Bondad-Reantaso, M. G., Ogawa, K., Fukudome, M. and Wakabayashi, H. (1995 a). Reproduction and growth of Neobenedenia girellae (Monogenea: Capsalidae), a skin parasite of Japanese cultured marine fish. Fish Pathology 30, 227231.CrossRefGoogle Scholar
Bondad-Reantaso, M. G., Ogawa, K., Yoshinaga, T. and Wakabayashi, H. (1995 b). Acquired protection against Neobenedenia girellae in Japanese flounder. Fish Pathology 30, 233238.CrossRefGoogle Scholar
Buchmann, K. and Bresciani, J. (2006). Monogenea (phylum Platyhelminthes). In Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections. Second Edition (ed. Woo, P. T. K.), pp. 297344. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Buchmann, K., Roepstorff, A. and Waller, P. J. (1992). Experimental selection of mebendazole-resistant gill monogeneans from the European eel, Anguilla anguilla L. Journal of Fish Diseases 15, 393408.CrossRefGoogle Scholar
Bullard, S. A. and Overstreet, R. M. (2008). Digeneans as enemies of fishes. In Fish Diseases (ed. Eiras, J. C., Segner, H., Wahli, T. and Kapoor, B. G.), pp. 817976. Science Publishers, Enfield, NH, USA.Google Scholar
Cecchini, S., Saroglia, M., Berni, P. and Cognetti-Varriale, A. M. (1998). Influence of temperature on the lifecycle of Diplectanum aequans (Monogenea, Diplectanidae), parasitic on sea bass, Dicentrarchus labrax (L.). Journal of Fish Diseases 21, 7375.CrossRefGoogle Scholar
Chambers, C. B. and Ernst, I. (2005). Dispersal of the skin fluke Benedenia seriolae (Monogenea: Capsalidae) by tidal currents and implications for sea-cage farming of Seriola spp. Aquaculture 250, 6069.CrossRefGoogle Scholar
Crespo, S., Grau, A. and Padros, F. (1992). Sanguinicoliasis in the cultured amberjack Seriola dumerili Risso, from the Spanish Mediterranean area. Bulletin of the European Association of Fish Pathologists 12, 157159.Google Scholar
Cribb, T. H., Adlard, R. D., Hayward, C. J., Bott, N. J., Ellis, D., Evans, D. and Nowak, B. F. (2011). The life cycle of Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyi . International Journal for Parasitology 41, 861870.CrossRefGoogle ScholarPubMed
Dezfuli, B. S., Giari, L., Simoni, E., Menegatti, R., Shinn, A. P. and Manera, M. (2007). Gill histopathology of cultured European sea bass, Dicentrarchus labrax (L.), infected with Diplectanum aequans (Wagener 1857) Diesing 1958 (Diplectanidae: Monogenea). Parasitology Research 100, 707713.CrossRefGoogle ScholarPubMed
Eng, C. T. and Tec, E. (2002). Introduction and history of cage culture. In Diseases and Disorders of Finfish in Cage Culture (ed. Woo, P. T. K., Bruno, D. W. and Lim, L. H. S.), pp. 139. CABI Publishing, Wallingford, UK.Google Scholar
Ernst, I., Whittington, I. D., Corneillie, S. and Talbot, C. (2005). Effects of temperature, salinity, desiccation and chemical treatments on egg embryonation and hatching success of Benedenia seriolae (Monogenea: Capsalidae), a parasite of farmed Seriola spp. Journal of Fish Diseases 28, 157164.CrossRefGoogle ScholarPubMed
FAO (2013). FishStatJ – software for fishery statistical time series. www.fao.org/fishery/statistics/software/fishstatj/en.Google Scholar
Fernandez-Jover, D., Faliex, E., Sanchez-Jerez, P., Sasal, P. and Bayle-Sempere, J. T. (2010). Coastal fish farming does not affect the total parasite communities of wild fish in SW Mediterranean. Aquaculture 300, 1016.CrossRefGoogle Scholar
Froese, R. and Pauly, D. (eds) (2014). FishBase. World Wide Web electronic publication. www.fishbase.org.Google Scholar
González-Lanza, C., Alvarez-Pellitero, P. and Sitja-Bobadilla, A. (1991). Diplectanidae (Monogenea) infestations of sea bass, Dicentrarchus labrax (L.), from the Spanish Mediterranean area. Parasitology Research 77, 307314.CrossRefGoogle ScholarPubMed
Goven, B. A., Gilbert, J. P. and Gratzek, J. B. (1980). Apparent drug resistance to the organophosphate dimethyl (2,2,2-trichloro-1-hydroxyethyl) phosphate by monogenetic trematodes. Journal of Wildlife Diseases 16, 343346.CrossRefGoogle Scholar
Grau, A., Crespo, S., Pastor, E., González, P. and Carbonell, E. (2003). High infection by Zeuxapta seriolae (Monogenea: Heteraxinidae) associated with mass mortalities of amberjack Seriola dumerili Risso reared in sea cages in the Balearic Islands (western Mediterranean). Bulletin of the European Association of Fish Pathologists 23, 139142.Google Scholar
Hardy-Smith, P., Ellis, D., Humphrey, J., Evans, M., Evans, D., Rough, K., Valdenegro, V. and Nowak, B. (2012). In vitro and in vivo efficacy of anthelmintic compounds against blood fluke (Cardicola forsteri). Aquaculture 334, 3944.CrossRefGoogle Scholar
Hirayama, T., Kawano, F. and Hirazawa, N. (2009). Effect of Neobenedenia girellae (Monogenea) infection on host amberjack Seriola dumerili (Carangidae). Aquaculture 288, 159165.CrossRefGoogle Scholar
Hirazawa, N., Akiyama, K. and Umeda, N. (2013). Differences in sensitivity to the anthelmintic praziquantel by the skin-parasitic monogeneans Benedenia seriolae and Neobenedenia girellae . Aquaculture 404–405, 5964.CrossRefGoogle Scholar
Holzer, A. S., Montero, F. E., Repullés, A., Nolan, M. J., Sitja-Bobadilla, A., Alvarez-Pellitero, P., Zarza, C. and Raga, J. A. (2008). Cardicola aurata sp. n. (Digenea: Sanguinicolidae) from Mediterranean Sparus aurata L. (Teleostei: Sparidae) and its unexpected phylogenetic relationship with Paradeontacylix McIntosh, 1934. Parasitology International 57, 472482.CrossRefGoogle Scholar
Hutchings, P. A. and Glasby, C. J. (1988). The Amphitritinae (Polychaeta: Terebellidae) from Australia. Records of the Australian Museum 40, 160.CrossRefGoogle Scholar
Ishimaru, K., Mine, R., Shirakashi, S., Kaneko, E., Kubono, K., Okada, T., Sawada, Y. and Ogawa, K. (2013). Praziquantel treatment against Cardicola blood flukes: determination of the minimal effective dose and pharmacokinetics in juvenile Pacific bluefin tuna. Aquaculture 402–403, 2427.CrossRefGoogle Scholar
Kamegai, Sh., Yasunaga, N., Ogawa, S. and Yasumoto, S. (1982). Galactosomum sp., causing rushing behaviour in cultured fish, collected from sea gulls. Japanese Journal of Parasitology 32 (Special Issue), 31.Google Scholar
Kearn, G. C., Ogawa, K. and Maeno, Y. (1992). Egg production, the oncomiracidium and larval development of Benedenia seriolae, a skin parasite of the yellowtail, Seriola quinqueradiata in Japan. Publications of Seto Marine Biological Laboratory 35, 351362.CrossRefGoogle Scholar
Kent, M. L., Margolis, L. and Fournie, J. W. (1991). A new eye disease in pen-reared chinook caused by metacestodes of Gilquinia squali (Trypanorhyncha). Journal of Aquatic Animal Health 3, 134140.2.3.CO;2>CrossRefGoogle Scholar
Kim, K. H. and Choi, E. S. (1998). Treatment of Microcotyle sebastis (Monogenea) on the gills of cultured rockfish (Sebastes schelegeli) with oral administration of mebendazole and bithionol. Aquaculture 167, 115121.CrossRefGoogle Scholar
Kim, K. H. and Cho, J. B. (2000). Treatment of Microcotyle sebastis (Monogenea: Polyopisthocotylea) infestation with praziquantel in an experimental cage simulating commercial rockfish Sebastes schlegeli culture conditions. Diseases of Aquatic Organisms 40, 229231.CrossRefGoogle Scholar
Kim, K.-H., Park, S.-I. and Jee, B.-J. (1998). Efficacy of oral administration of praziquantel and mebendazole against Microcotyle sebastis (Monogenea) infestation of cultured rockfish (Sebastes schlegeli). Fish Pathology 33, 467471.CrossRefGoogle Scholar
Kim, K. H., Hwang, Y. J., Cho, J. B. and Park, S. I. (2000). Immunization of cultured juvenile rockfish Sebastes schlegeli against Microcotyle sebastis (Monogenea). Diseases of Aquatic Organisms 40, 2932.CrossRefGoogle ScholarPubMed
Kim, K. H., Lee, E. H., Kwon, S. R. and Cho, J. B. (2001). Treatment of Microcotyle sebastis infestation in cultured rockfish Sebastes schlegeli by oral administration of praziquantel in combination with cimetidine. Diseases of Aquatic Organisms 44, 133136.CrossRefGoogle ScholarPubMed
Kimura, M. and Endo, M. (1979). Whirling disease caused by metacercaria of a fluke. Fish Pathology 13, 211213.CrossRefGoogle Scholar
Kimura, T., Nomura, Y., Kawakami, H., Itano, T., Iwasaki, M., Morita, J. and Enomoto, J. (2009). Field trials of febantel against gill fluke disease caused by the monogenean Heterobothrium okamotoi in cultured tiger puffer Takifugu rubripes . Fish Pathology 44, 6771.CrossRefGoogle Scholar
Kinami, R., Miyamoto, J., Yoshinaga, T., Ogawa, K. and Nagakura, Y. (2005). A practical method to distinguish between Neobenedenia girellae and Benedenia seriolae . Fish Pathology 40, 6366.CrossRefGoogle Scholar
Kirchhoff, N. T., Rough, K. M. and Nowak, B. F. (2011). Moving cages further offshore: effects on southern bluefin tuna, T. maccoyii, parasites, health and performance. PLOS ONE 6(8), e23705.CrossRefGoogle Scholar
Køie, M. (1982). The redia, cercaria and early stages of Aporocotyle simplex Odhner, 1900 (Sanguinicolidae) – a digenetic trematode which has a polychaete annelid as the only intermediate host. Ophelia 21, 115145.CrossRefGoogle Scholar
Køie, M. and Petersen, M. E. (1988). A new annelid intermediate host (Lanassa nordenskioeldi Malmgren, 1866) (Polychaeta: Terebellidae) for Aporocotyle sp. and a new final host family (Pisces: Bothidae) for Aporocotyle simplex Odhner, 1900 (Digenea: Sanguinicolidae). Journal of Parasitology 74, 499502.CrossRefGoogle Scholar
Lackenby, J. A., Chambers, C. B., Ernst, I. and Whittington, I. D. (2007). Effect of water temperature on reproductive development of Benedenia seriolae (Monogenea: Capsalidae) from Seriola lalandi in Australia. Diseases of Aquatic Organisms 74, 235242.CrossRefGoogle ScholarPubMed
Lindenstøm, T. and Buchmann, K. (2000). Acquired resistance in rainbow trout against Gyrodactylus derjavini . Journal of Helminthology 74, 155160.CrossRefGoogle Scholar
Mansell, B., Powell, M. D., Ernst, I. and Nowak, B. F. (2005). Effects of the gill monogenean Zeuxapta seriolae (Meserve, 1938) and treatment with hydrogen peroxide on pathophysiology of kingfish, Seriola lalandi Valenciennes, 1833. Journal of Fish Diseases 28, 253262.CrossRefGoogle Scholar
McGladdery, S. E., Murphy, L., Hicks, B. D. and Wagner, S. K. (1990). The effect of Stephanostomum tenue (Digenea: Acanthocolpidae) on marine aquaculture of the rainbow trout, Salmo gairdneri . In Pathology in Marine Science (ed. Chen, T. C. and Perkins, F. O.), pp. 305315. Academic Press, London, UK.Google Scholar
Militz, T. A., Southgate, P. C., Carton, A. G. and Hutson, K. S. (2013). Dietary supplementation of garlic (Allium sativum) to prevent monogenean infection in aquaculture. Aquaculture 408–409, 9599.CrossRefGoogle Scholar
Mladineo, I. and Maršić-Lučić, J. (2007). Host switch of Lamellodiscus elegans (Monogenea: Monopisthocotylea) and Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) between cage-reared sparids. Veterinary Research Communications 31, 153160.CrossRefGoogle ScholarPubMed
Mladineo, I., Šegvić, T. and Grubišić, L. (2009). Molecular evidence for the lack of transmission of Sparicotyle chrysophrii between wild bogue (Boops boops) and cage-reared sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Aquaculture 295, 160167.CrossRefGoogle Scholar
Mooney, A. J., Ernst, I. and Whittington, I. D. (2008). Egg-laying patterns and in vivo egg production in the monogenean parasites Heteraxine heterocerca and Benedenia seriolae from Japanese yellowtail Seriola quinqueradiata . Parasitology 135, 12951302.CrossRefGoogle ScholarPubMed
Nagakura, Y., Yoshinaga, T., Sakamoto, T., Hattori, K. and Okamoto, N. (2010). Susceptibility of four families derived from two Seriola species to the monogenean parasite (Benedenia seriolae) using a new challenge method. Journal of Fisheries Technology 3, 2126.Google Scholar
Nakane, M., Ogawa, K., Fujita, T., Sameshima, M. and Wakabayashi, H. (2005). Acquired protection of tiger puffer Takifugu rubripes against infection with Heterobothrium okamotoi (Monogenea: Diclidophoridae). Fish Pathology 40, 95101.CrossRefGoogle Scholar
Nakayasu, C., Tsutsumi, N., Yoshitomi, T., Yoshinaga, T. and Kumagai, A. (2003). Identification of Japanese flounder leucocytes involved in the host response to Neoheterobothrium hirame . Fish Pathology 38, 914.CrossRefGoogle Scholar
Nakayasu, C., Tsutsumi, N., Oseko, N. and Hasegawa, S. (2005). Role of cellular response in elimination of the monogenean Neoheterobothrium hirame in Japanese flounder Paralichthys olivaceus . Diseases of Aquatic Organisms 64, 127134.CrossRefGoogle ScholarPubMed
Ogawa, K. (1988). Occurrence of Bivagina tai (Monogenea: Microcotylidae) on the gills of cultured red sea bream Pagrus major . Nippon Suisan Gakkaishi 54, 6570.CrossRefGoogle Scholar
Ogawa, K. (2002). Impacts of diclidophorid monogenean infections on fisheries in Japan. International Journal for Parasitology 32, 373380.CrossRefGoogle ScholarPubMed
Ogawa, K. (2012). Heterobothrium okamotoi and Neoheterobothrium hirame . In Fish Parasites: Pathobiology and Protection (ed. Woo, P. T. K. and Buchmann, K.), pp. 245259. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Ogawa, K. and Fukudome, M. (1994). Mass mortality of imported amberjack (Seriola dumerili) caused by blood fluke (Paradeontacylix) infection in Japan. Fish Pathology 29, 265269.CrossRefGoogle Scholar
Ogawa, K. and Inouye, K. (1997). Heterobothrium infection of cultured tiger puffer, Takifugu rubripes — experimental infection. Fish Pathology 32, 2127.CrossRefGoogle Scholar
Ogawa, K., Hattori, K., Hatai, K. and Kubota, S. S. (1989). Histopathology of cultured marine fish, Seriola purpurascens (Carangidae) infected with Paradeontacylix spp. (Trematoda: Sanguinicolidae) in its vascular system. Fish Pathology 24, 7581.CrossRefGoogle Scholar
Ogawa, K., Andoh, H. and Yamaguchi, M. (1993). Some biological aspects of Paradeontacylix (Trematoda: Sanguinicolidae) infection in cultured marine fish Seriola dumerili . Fish Pathology 28, 177180.CrossRefGoogle Scholar
Ogawa, K., Bondad-Reantaso, M. G., Fukudome, M. and Wakabayashi, H. (1995 a). Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. Journal of Parasitology 81, 223227.CrossRefGoogle ScholarPubMed
Ogawa, K., Bondad-Reantaso, M. G. and Wakabayashi, H. (1995 b). Redescription of Benedenia epinepheli (Yamaguti, 1937) Meserve, 1938 (Monogenea: Capsalidae) from cultured and aquarium marine fishes of Japan. Canadian Journal of Fisheries and Aquatic Sciences 52 (Suppl. 1), 6270.CrossRefGoogle Scholar
Ogawa, K., Miyamoto, J., Wang, H.-C., Lo, C.-F. and Kou, G.-H. (2006). Neobenedenia girellae (Monogenea) infection of cultured cobia Rachycentron canadum in Taiwan. Fish Pathology 41, 5156.CrossRefGoogle Scholar
Ogawa, K., Nagano, T., Akai, N., Sugita, A. and Hall, K. A. (2007). Blood fluke infection of cultured tiger puffer Takifugu rubripes imported from China to Japan. Fish Pathology 42, 9199.CrossRefGoogle Scholar
Ogawa, K., Iwaki, T., Itoh, N. and Nagano, T. (2012). Larval cestodes found in the skeletal muscle of cultured greater amberjack Seriola dumerili in Japan. Fish Pathology 47, 3336.CrossRefGoogle Scholar
Ohashi, H., Umeda, N., Hirazawa, N., Ozaki, Y., Miura, C. and Miura, T. (2007 a). Purification and identification of a glycoprotein that induces the attachment of oncomiracidia of Neobenedenia girellae (Monogenea, Capsalidae). International Journal for Parasitology 37, 14831490.CrossRefGoogle ScholarPubMed
Ohashi, H., Umeda, N., Hirazawa, N., Ozaki, Y., Miura, C. and Miura, T. (2007 b). Expression of vasa (vas)-related genes in germ cells and specific interference with gene functions by double-stranded RNA in the monogenean, Neobenedenia girellae . International Journal for Parasitology 37, 515523.CrossRefGoogle ScholarPubMed
Ohno, Y., Kawano, F. and Hirazawa, N. (2008). Susceptibility by amberjack (Seriola dumerili), yellowtail (S. quinqueradiata) and Japanese flounder (Paralichthys olivaceus) to Neobenedenia girellae (Monogenea) infection and their acquired protection. Aquaculture 274, 3035.CrossRefGoogle Scholar
Ohno, Y., Kawano, F. and Hirazawa, N. (2009). The effect of oral antibiotic treatment and freshwater bath treatment on susceptibility to Neobenedenia girellae (Monogenea) infection of amberjack (Seriola dumerili) and yellowtail (S. quinqueradiata) hosts. Aquaculture 292, 248251.CrossRefGoogle Scholar
Okabe, K. (2000). Hada-clean, an antiparasitic drug for oral treatment of fish parasites. Doyaku Kenkyu 60, 112.Google Scholar
Ozaki, A., Yoshida, K., Fuji, K., Kubota, S., Kai, W., Koyama, T., Nakagawa, M., Hotta, T., Tsuzaki, T., Okamoto, N., Araki, K. and Sakamoto, T. (2013). Quantitative trait loci (QTL) associated with resistance to a monogenean parasite (Benedenia seriolae) in yellowtail (Seriola quinqueradiata) through genome wide analysis. PLOS ONE 8(6), e64987.CrossRefGoogle ScholarPubMed
Paperna, I. and Dzikowski, R. (2006). Digenea (Phylum Platyhelminthes). In Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections. Second Edition (ed. Woo, P. T. K.), pp. 345390. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Repullés-Albelda, A., Montero, F. E., Holzer, A. S., Ogawa, K., Hutson, K. S. and Raga, J. A. (2008). Speciation of the Paradeontacylix spp. (Sanguinicolidae) of Seriola dumerili. Two new species of the genus Paradeontacylix from the Mediterranean. Parasitology International 57, 405414.CrossRefGoogle ScholarPubMed
Sharp, N. J., Diggles, B. K., Poortenaar, C. W. and Willis, T. J. (2004). Efficacy of Aqui-S, formalin and praziquantel against the monogeneans, Benedenia seriolae and Zeuxapta seriolae, infecting yellowtail kingfish Seriola lalandi lalandi in New Zealand. Aquaculture 236, 6783.CrossRefGoogle Scholar
Shirakashi, S., Kishimoto, Y., Kinami, R., Katano, K., Ishimaru, K., Murata, O. and Ogawa, K. (2012 a). Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis . Parasitology International 61, 242249.CrossRefGoogle ScholarPubMed
Shirakashi, S., Andrews, M., Kishimoto, Y., Ishimaru, K., Sawada, Y., Murata, O. and Ogawa, K. (2012 b). Oral treatment of praziquantel as an effective control measure against blood fluke infection in Pacific bluefin tuna (Thunnus orientalis). Aquaculture 326–329, 1519.CrossRefGoogle Scholar
Shirakashi, S., Hirano, C., Asmara, A. b., Noor, N. b. M., Ishimaru, K. and Miyashita, S. (2013 a). Shading reduces Neobenedenia girellae infection on cultured greater amberjack Seriola dumerili . Fish Pathology 48, 2528.CrossRefGoogle Scholar
Shirakashi, S., Hirano, C., Ishitani, H. and Ishimaru, K. (2013 b). Diurnal pattern of skin fluke infection in cultured amberjack, Seriola dumerili, at different water depths. Aquaculture 402–403, 1923.CrossRefGoogle Scholar
Silan, P., Cabral, P. and Maillard, C. (1985). Enlargement of the host range of Polylabris tubicirrus (Monogenea, Polyopisthocotylea) under fish-farming conditions. Aquaculture 47, 267270.CrossRefGoogle Scholar
Sitjà-Bobadilla, A., Conde de Felipe, M. and Alvarez-Pellitero, P. (2006). In vivo and in vitro treatments against Sparicotyle chrysophrii (Monogenea: Microcotylidae) parasitizing the gills of gilthead sea bream (Sparus aurata L.). Aquaculture 261, 856864.CrossRefGoogle Scholar
Sugihara, Y., Yamada, T., Tamaki, A., Yamanishi, R. and Kanai, K. (2014). Larval stages of the bluefin tuna blood fluke Cardicola opisthorchis (Trematoda: Aporocotylidae) found from Terebella sp. (Polychaeta: Terebellidae). Parasitology International 63, 295299.CrossRefGoogle ScholarPubMed
Takebe, T., Saeki, Y., Masuma, S., Nikaido, H., Ide, K., Shiozawa, S. and Mano, H. (2013). Prevalence and transmission capability of Didymocystis wedli (Digenea; Didymozoidae) in cage-reared young Pacific bluefin tuna Thunnus orientalis in the Amami area of Japan. Nippon Suisan Gakkaishi 79, 214218.CrossRefGoogle Scholar
Tsutsui, S., Tasumi, S., Suetake, H. and Suzuki, Y. (2003). Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes . Journal of Biological Chemistry 278, 2088220889.CrossRefGoogle ScholarPubMed
Tsutsui, S., Tasumi, S., Suetake, H., Kikuchi, K. and Suzuki, Y. (2005). Demonstration of the mucosal lectins in the epithelial cells of internal and external body surface tissues in pufferfish (Fugu rubripes). Developmental and Comparative Immunology 29, 243253.CrossRefGoogle ScholarPubMed
Tsutsumi, N., Mushiake, K., Mori, K., Yoshinaga, T. and Ogawa, K. (2002). Effects of temperature on the egg-laying of the monogenean Neoheterobothrium hirame . Fish Pathology 37, 4143.CrossRefGoogle Scholar
Tsutsumi, N., Yoshinaga, T., Kamaishi, T., Nakayasu, C. and Ogawa, K. (2003). Effects of temperature on the development and longevity of the monogenean Neoheterobothrium hirame on Japanese flounder Paralichthys olivaceus . Fish Pathology 38, 4147.CrossRefGoogle Scholar
Tubbs, L. A., Poortenaar, C. W., Sewell, M. A. and Diggles, B. K. (2005). Effects of temperature on fecundity in vitro, egg hatching and reproductive development of Benedenia seriolae and Zeuxapta seriolae (Monogenea) parasitic on yellowtail kingfish Seriola lalandi . International Journal for Parasitology 35, 315327.CrossRefGoogle ScholarPubMed
Umeda, N. and Hirazawa, N. (2004). Response of the monogenean Neobenedenia girellae to low salinities. Fish Pathology 39, 105107.CrossRefGoogle Scholar
Wang, G., Kim, J.-H., Sameshima, M. and Ogawa, K. (1997). Detection of antibodies against the monogenean Heterobothrium okamotoi in tiger puffer by ELISA. Fish Pathology 32, 179180.CrossRefGoogle Scholar
West, A. P. and Roubal, F. R. (1998 a). Experiments on the longevity, fecundity and migration of Anoplodiscus cirrusspiralis (Monogenea) on the marine fish Pagrus auratus (Bloch & Schneider) (Sparidae). Journal of Fish Diseases 21, 299303.CrossRefGoogle ScholarPubMed
West, A. P. and Roubal, F. R. (1998 b). Population dynamics of the monogenean Anoplodiscus cirrusspiralis on the snapper, Pagrus auratus . International Journal for Parasitology 28, 571577.CrossRefGoogle ScholarPubMed
Whittington, I. D. and Chisholm, L. A. (2008). Diseases caused by Monogenea. In Fish Diseases (ed. Eiras, J. C., Segner, H., Wahli, T. and Kapoor, B. G.), pp. 683816. Science Publishers, Enfield, NH, USA.Google Scholar
Whittington, I. D. and Horton, M. A. (1996). A revision of Neobenedenia Yamaguti, 1963 (Monogenea: Capsalidae) including a redescription of N. melleni (MacCallum, 1927) Yamaguti, 1963. Journal of Natural History 30, 11131156.CrossRefGoogle Scholar
Williams, R. E., Ernst, I., Chambers, C. B. and Whittington, I. D. (2007). Efficacy of orally administered praziquantel against Zeuxapta seriolae and Benedenia seriolae (Monogenea) in yellowtail kingfish Seriola lalandi . Diseases of Aquatic Organisms 77, 199205.CrossRefGoogle ScholarPubMed
Yamabata, N., Yoshinaga, T. and Ogawa, K. (2004). Effects of water temperature on egg production and egg viability of the monogenean Heterobothrium okamotoi infecting tiger puffer Takifugu rubripes . Fish Pathology 39, 215217.CrossRefGoogle Scholar
Yasunaga, N., Ogawa, S., Hirakawa, E., Hatai, K., Yasumoto, S. and Yamamoto, H. (1981). On the marine-fish disease caused by Galactosomum sp. with special reference to its species and life cycle. Bulletin of the Nagasaki Prefectural Institute of Fisheries 7, 6576.Google Scholar
Yoshinaga, T., Kamaishi, T., Segawa, I. and Yamamoto, E. (2000). Effects of NaCl-supplemented seawater on the monogenean Neoheterobothrium hirame, infecting the Japanese flounder. Fish Pathology 35, 9798.CrossRefGoogle Scholar
Yoshinaga, T., Tsutsumi, N., Hall, K. A. and Ogawa, K. (2009). Origin of the diclidophorid monogenean Neoheterobothrium hirame Ogawa, 1999, the causative agent of anemia in olive flounder, Paralichthys olivaceus . Fisheries Science 75, 11671176.CrossRefGoogle Scholar