Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T00:30:43.920Z Has data issue: false hasContentIssue false

Development of a strategy for the identification of surface proteins in the pathogenic microsporidian Nosema bombycis

Published online by Cambridge University Press:  26 March 2015

WEIXI ZHAO
Affiliation:
College of Life Sciences, Chongqing Normal University, Chongqing, China
YOUJIN HAO
Affiliation:
College of Life Sciences, Chongqing Normal University, Chongqing, China
LINGLIN WANG
Affiliation:
College of Life Sciences, Chongqing Normal University, Chongqing, China
ZEYANG ZHOU
Affiliation:
College of Life Sciences, Chongqing Normal University, Chongqing, China The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
ZHI LI*
Affiliation:
College of Life Sciences, Chongqing Normal University, Chongqing, China
*
*Corresponding author. College of Life Sciences, Chongqing Normal University, Chongqing 401331, China. E-mail: [email protected]

Summary

Parasite–host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arjunan, S., Reinartz, M., Emde, B., Zanger, K. and Schrader, J. (2009). Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart. Cell Biochemistry and Biophysics 53, 135143..Google Scholar
Bhat, S. A., Bashir, I. and Kamili, A. S. (2009). Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera: Bombycidae): a review. African Journal of Agricultural Research 4, 15191523.Google Scholar
Burt, E. T., Daly, R., Hoganson, D., Tsirulnikov, Y., Essmann, M. and Larsen, B. (2003). Isolation and partial characterization of Hsp90 from Candida albicans. Annals of Clinical and Laboratory Science 33, 8693.Google Scholar
Canning, E. U. and Lom, J. (1986). The Microsporidia of Vertebrates. Academic Press Ltd, London.Google Scholar
Che, F. Y., Madrid-Aliste, C., Burd, B., Zhang, H., Nieves, E., Kim, K., Fiser, A., Angeletti, R. H. and Weiss, L. M. (2011). Comprehensive proteomic analysis of membrane proteins in Toxoplasma gondii . Molecular and Cellular Proteomics 10, M110 000745.CrossRefGoogle ScholarPubMed
Chen, J., Geng, L., Long, M., Li, T., Li, Z., Yang, D., Ma, C., Wu, H., Ma, Z. and Li, C. (2013). Identification of a novel chitin-binding spore wall protein (NbSWP12) with a BAR-2 domain from Nosema bombycis (microsporidia). Parasitology 140, 13941402.Google Scholar
de la Torre-Escudero, E., Valero, L., Perez-Sanchez, R., Manzano-Roman, R. and Oleaga, A. (2012). Proteomic identification of endothelial cell surface proteins isolated from the hepatic portal vein of mice infected with Schistosoma bovis . Journal of Proteomics 77, 129143.Google Scholar
de Miguel, N., Lustig, G., Twu, O., Chattopadhyay, A., Wohlschlegel, J. A. and Johnson, P. J. (2010). Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Molecular and Cellular Proteomics 9, 15541566.CrossRefGoogle ScholarPubMed
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Floderus, E. and Linder, L. E. (1990). Localization of aminopeptidases in Streptococcus sanguis strain 903. Current Microbiology 20, 255260.Google Scholar
Geng, L. (2012). The study on the spore wall glycoproteins of Nosema bombycis. Doctor thesis. Southwest University, Chongqing, China.Google Scholar
Ghosh, K., Cappiello, C. D., McBride, S. M., Occi, J. L., Cali, A., Takvorian, P. M., McDonald, T. V. and Weiss, L. M. (2006). Functional characterization of a putative aquaporin from Encephalitozoon cuniculi, a microsporidia pathogenic to humans. International Journal of Parasitology 36, 5762.Google Scholar
Hayman, J. R., Hayes, S. F., Amon, J. and Nash, T. E. (2001). Developmental expression of two spore wall proteins during maturation of the microsporidian Encephalitozoon intestinalis . Infection and Immunity 69, 70577066.Google Scholar
Hossain, Z., Amyot, L., McGarvey, B., Gruber, M., Jung, J. and Hannoufa, A. (2012). The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana . PloS ONE 7, e30425.Google Scholar
Karhemo, P. R., Ravela, S., Laakso, M., Ritamo, I., Tatti, O., Makinen, S., Goodison, S., Stenman, U. H., Holtta, E., Hautaniemi, S., Valmu, L., Lehti, K. and Laakkonen, P. (2012). An optimized isolation of biotinylated cell surface proteins reveals novel players in cancer metastasis. Journal of Proteomics 77, 87100.Google Scholar
Kischel, P., Guillonneau, F., Dumont, B., Bellahcene, A., Stresing, V., Clezardin, P., De Pauw, E. A. and Castronovo, V. (2008). Cell membrane proteomic analysis identifies proteins differentially expressed in osteotropic human breast cancer cells. Neoplasia 10, 10141020.Google Scholar
Lai, Y. and Thompson, J. (1972). Distinguishable ATPase activities of cell wall and plasma membrane. Phytochemistry 11, 27472749.Google Scholar
Lamoth, F., Juvvadi, P. R., Fortwendel, J. R. and Steinbach, W. J. (2012). Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus . Eukaryotic Cell 11, 13241332.Google Scholar
Li, Y., Wu, Z., Pan, G., He, W., Zhang, R., Hu, J. and Zhou, Z. (2009). Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis . International Journal of Parasitology 39, 391398.Google Scholar
Li, Z., Pan, G., Li, T., Huang, W., Chen, J., Geng, L., Yang, D., Wang, L. and Zhou, Z. (2012). SWP5, a spore wall protein, interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis . Eukaryotic Cell 11, 229237.Google Scholar
Lina, G. (2014). Studies on the functional genome of Nosema bombycis – the study on the spore wall glycoproteins of Nosema bombycis. Doctor thesis. Southwest University, Chongqing, China.Google Scholar
Lopez-Ribot, J. L. and Chaffin, W. L. (1996). Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae . Journal of Bacteriology 178, 47244726.Google Scholar
Moroianu, J., Fett, J. W., Riordan, J. F. and Vallee, B. L. (1993). Actin is a surface component of calf pulmonary artery endothelial cells in culture. Proceedings of the National Academy of Sciences 90, 38153819.Google Scholar
Olmos, E. and Hellin, E. (1997). Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium-based method in a salt-adapted cell line of Pisum sativum . Journal of Experimental Botany 48, 15291535.Google Scholar
Rui, T. (2014). Analysis of spore wall protein SWP4 of Nosema bombycis . Master thesis. Southwest University, Chongqing, China.Google Scholar
Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. and Bork, P. (2000). SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Research 28, 231234.Google Scholar
Slayman, C., Kaminski, P. and Stetson, D. (1990). Structure and function of fungal plasma-membrane ATPases. In Biochemistry of Cell Walls and Membranes in Fungi Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W. and Copping, L. G., pp. 299316. Springer, Berlin, Heidelberg.Google Scholar
Sonnhammer, E. L., Eddy, S. R., Birney, E., Bateman, A. and Durbin, R. (1998). Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Research 26, 320322.Google Scholar
Southern, T. R., Jolly, C. E., Lester, M. E. and Hayman, J. R. (2007). EnP1, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro . Eukaryotic Cell 6, 13541362.Google Scholar
Triantafilou, K., Triantafilou, M., Ladha, S., Mackie, A., Dedrick, R. L., Fernandez, N. and Cherry, R. (2001). Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. Journal of Cell Science 114, 25352545.Google Scholar
Wittner, M. and Weiss, L. M. (1999). The Microsporidia and Microsporidiosis. ASM Press, Washington, DC.Google Scholar
Wu, Z., Li, Y., Pan, G., Tan, X., Hu, J., Zhou, Z. and Xiang, Z. (2008). Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics 8, 24472461.Google Scholar
Xu, Y. and Weiss, L. M. (2005). The microsporidian polar tube: a highly specialised invasion organelle. International Journal of Parasitology 35, 941953.Google Scholar
Xu, Y., Takvorian, P., Cali, A., Wang, F., Zhang, H., Orr, G. and Weiss, L. M. (2006). Identification of a new spore wall protein from Encephalitozoon cuniculi . Infection and Immunity 74, 239247.Google Scholar
Yang, D., Dang, X., Peng, P., Ma, C., Jia, J., Qin, G., Long, M., Wu, H., Liu, T., Zhou, X., Pan, G. and Zhou, Z. (2014). Nbhswp11, a microsporidia Nosema bombycis protein localizing in the spore wall and membranes, reducing spores adherence to host cell BME. Journal of Parasitology 100(5), 623632.Google Scholar
Zhang, M., Yang, Y., Xu, Y., Qie, Y., Wang, J., Zhu, B., Wang, Q., Jin, R., Xu, S. and Wang, H. (2007). Trehalose-6-phosphate phosphatase from Mycobacterium tuberculosis induces humoral and cellular immune responses. FEMS Immunology and Medical Microbiology 49, 6874.Google Scholar