Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T06:26:28.906Z Has data issue: false hasContentIssue false

Description of a simulation model for the population dynamics of Eimeria acervulina infection in broilers

Published online by Cambridge University Press:  06 April 2009

A. M. Henken
Affiliation:
Department of Animal Husbandry, Agricultural University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
H. W. Ploeger
Affiliation:
Department of Animal Husbandry, Agricultural University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
E. A. M. Graat
Affiliation:
Department of Animal Husbandry, Agricultural University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
T. E. Carpenter
Affiliation:
Department of Epidemiology and Preventive Medicine, School of Veterinary Medicine, University of California, Davis 95616, USA

Summary

A simulation model for the population dynamics of Eimeria acervulina infection in broilers is presented. The model describes the development of the numbers of parasites in the various life-stages during the growing period of broilers and the empty house period between grow-outs. The model includes assumptions with respect to development of immunity to E. acervulina infection and effects of application of anticoccidial drugs. The model consists of a set of difference equations that are solved numerically at 1 h intervals. Under constant conditions, an equilibrium level was reached after a few grow-outs during which infection always peaked around the 21st day in the growing period. Within a growing period, infection peaked earlier (later) than the 21st day in case initial numbers of sporulated oocysts were higher (lower) than the equilibrium number.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brackett, S. & Bliznick, A. (1952). The reproductive potential of five species of coccidia of the chicken as demonstrated by oocyst production. Journal of Parasitology 38, 133–9.CrossRefGoogle ScholarPubMed
Braem, G. & Suls, L. (1992). A strategic approach to coccidiosis prevention. Poultry International 31, 1218.Google Scholar
Braunius, W. W. (1987). Some aspects of epidemiology and control of coccidiosis in broilers. Ph.D. thesis, Faculty of Veterinary Medicine, State University of Utrecht, Utrecht, The Netherlands.Google Scholar
Chapman, H. D. & Johnson, Z. B. (1992). Oocysts of Eimeria in the litter of broilers reared to eight weeks of age before and after withdrawal of lasalocid or salinomycin. Poultry Science 71, 1342–7.CrossRefGoogle ScholarPubMed
Dijkhuizen, A. A. (1988). Modelling to support health programs in modern livestock farming. Netherlands Journal of Agricultural Science 36, 3542.CrossRefGoogle Scholar
Fayer, R. & Reid, W. M. (1982). Control of coccidiosis. In The Biology of the Coccidia (ed. Long, P. L.), pp. 453–87. Baltimore, MD: University Park Press.Google Scholar
Graat, E. A. M., Henken, A. M., Ploeger, H. W., Noordhuizen, J. P. T. M. & Vertommen, M. H. (1994). Rate and course of sporulation of oocysts of Eimeria acervulina under different environmental conditions. Parasitology 108, 497502.CrossRefGoogle ScholarPubMed
Henken, A. M., Graat, E. A. M., Ploeger, H. W. & Carpenter, T. E. (1994). Description of a model to simulate effects of Eimeria acervulina infection on broiler production. Parasitology 108, 513518.CrossRefGoogle Scholar
Hurd, H. S. & Kaneene, J. B. (1993). The application of simulation models and systems analysis in epidemiology: a review. Preventive Veterinary Medicine 15, 8199.CrossRefGoogle Scholar
Joyner, L. P. & Norton, C. C. (1976). The immunity arising from continuous low-level infection with Eimeria maxima and Eimeria acervulina. Parasitology 72, 115–25.CrossRefGoogle ScholarPubMed
Kheysin, Y. M. (1972). Life Cycles of Coccidia of Domestic Animals (ed. Todd, K. S. Jr; trans. Plous, F. K. Jr). Baltimore, London, Tokyo: University Park Press.Google Scholar
Long, P. L. & Rowell, J. G. (1975). Sampling broiler house litter for coccidial oocysts. British Poultry Science 16, 583–92.CrossRefGoogle ScholarPubMed
Long, P. L., Tompkins, R. V. & Millard, B. J. (1975). Coccidiosis in broilers: evaluation of infection by the examination of broiler house litter for oocysts. Avian Pathology 4, 287–94.CrossRefGoogle ScholarPubMed
Mathis, G. F., McDougald, L. R. & McMurray, B. (1984). Effectiveness of therapeutic anticoccidial drugs against recently isolated coccidia. Poultry Science 6, 1149–53.CrossRefGoogle Scholar
McDougald, L. R. (1982). Chemotherapy of coccidiosis. In The Biology of the Coccidia (ed. Long, P. L.), pp. 373427. Baltimore, MD: University Park Press.Google Scholar
McDougald, L. R., Fuller, L. & Solis, J. (1986). Drug sensitivity of 99 isolates of coccidia from broiler farms. Avian Diseases 30, 690–4.CrossRefGoogle ScholarPubMed
McDougald, L. R. & Reid, W. M. (1991). Coccidiosis. In Diseases of Poultry (ed. Calnek, B. W., Barnes, H. J., Beard, C. W., Reid, W. M. & Yoder, J. W. Jr), pp. 780–97. Ames, Iowa: Iowa State University Press.Google Scholar
Parry, S., Barratt, M. E. J., Jones, S., McKee, S. & Murray, J. D. (1992). Modelling coccidial infection in chickens: emphasis on vaccination by in-feed delivery of oocysts. Journal of Theoretical Biology 157, 407–25.CrossRefGoogle ScholarPubMed
Railliet, A. & Lucet, A. (1891). Note sur quelques espèces de coccidies encore peu étudiées. Bulletin de la Société Zoologique de France 16, 246–50.Google Scholar
Reid, W. M. (1990). History of avian medicine in the United States. X. Control of coccidiosis. Avian Diseases 34, 509–25.CrossRefGoogle ScholarPubMed
Reyna, P. S., McDougald, L. R. & Mathis, G. F. (1983). Survival of coccidia in poultry litter and reservoirs of infection. Avian Diseases 27, 464–73.CrossRefGoogle ScholarPubMed
Ricker, W. E. (1979). Growth rate and models. In Bioenergetics and Growth: Fish Physiology, Vol. III (ed. Hoar, W. S., Randall, D. J. & Brett, J. R.), pp. 677743.CrossRefGoogle Scholar
Ricklefs, R. E. (1985). Modification of growth and development of muscles of poultry. Poultry Science 64, 1563–76.Google Scholar
Rose, M. E. (1978). Immune response of chickens to coccidia and coccidiosis. In Avian Coccidiosis (ed. Long, P. L., Boorman, K. N. & Freeman, B. M.), pp. 297336. Edinburgh: British Poultry Science.Google Scholar
Rose, M. E. (1982). Host immune response. In The Biology of the Coccidia (ed. Long, P. L.), pp. 329–71. Baltimore, MD: University Park Press.Google Scholar
Sørensen, J. T. & Enevoldsen, C. (1992). Modelling the dynamics of the health-production complex in livestock herds: a review. Preventive Veterinary Medicine 13, 287–97.CrossRefGoogle Scholar
Tyzzer, E. E. (1929). Coccidiosis in gallinaceous birds. American Journal of Hygiene 10, 269383.Google Scholar
Voeten, A. C. (1987). Coccidiosis: a problem in broilers. In Energy Metabolism in Farm Animals: Effects of Housing, Stress and Disease (ed. Verstegen, M. W. A. & Henken, A. M.), pp. 410–22. Dordrecht, Boston, Lancaster: Martinus Nijhoff Publishers.CrossRefGoogle Scholar
Zoons, J., Buyse, J. & Decuypere, E. (1991). Mathematical models in broiler raising. World' Poultry Science Journal 47, 243–55.CrossRefGoogle Scholar