Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T20:24:25.579Z Has data issue: false hasContentIssue false

A cytological study of the early oocysts of seven species of Plasmodium and the occurrence of post-zygotic meiosis

Published online by Cambridge University Press:  06 April 2009

L. Bano
Affiliation:
Department of Parasitology, London School of Hygiene and Tropical Medicine

Extract

1. The cytological study of 4–8 hr. old zygotes of seven species of Plasmodium, i.e. P. gallinaceum, P. berghei, P. cynomolgi, P. gonderi, P. inui, P. knowlesi and P. vivax, revealed a uninucleate condition at the resting phase.

2. Ookinetes of these species at 12–24 hr were uninucleate and of the usual dimorphic form.

3. In the present studies post-zygotic meiosis was demonstrated in the early oocysts of the above seven species of Plasmodium. The times of investigation for the beginning and completion of meiosis in the early oocysts of these species of Plasmodium were as follows:

4. Different forms of spireme at prophases were observed in the early oocysts of the above species of Plasmodium. This fact indicated that each species has its own characteristic form of spireme; for instance, ‘bow-shaped’ in P. gallinaceum, beaded, filamentous net-work in P. cynomolgi.

5. The diploid and haploid number of chromosomes were demonstrated step by step, during the first reduction division in the early oocysts of seven species of Plasmodium.

6. The succeeding nuclear divisions following the post-zygotic meiosis were traced in early oocysts of seven species of Plasmodium. The divisions took place mitotically, giving rise to tetra- to multinucleate oocysts. The haploid group of chromosomes in each species was quite distinct during the different mitotic phases found in these oocysts.

7. The results obtained from the cytological study of different meiotic and mitotic phases found in the early oocysts of seven species of Plasmodium show that the number of chromosomes is a specific character, for instance, P. gallinaceum has a complex of two haploid chromosomes, P. cynomolgi, four; P. gonderi, three; P. inui, four; P. knowlesi, P. berghei and P. vivax, two.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastianelli, G. & Bignami, A. (1900 a). Malaria and mosquitoes: a paper read before the Tenth Congress of the Societa Italiana di Medicina Interna. (Translated by Dr G. Sandison Brock.) Lancet, 1, 79.CrossRefGoogle Scholar
Bastianelli, G. & Bignami, A. (1900 b). Über die Structure der Malaria-Parasiten des Aestivo Autumnal Fiebers. Untersuch. Naturl. Mensch. Tiere, 17, 108.Google Scholar
Bishop, A. (1955). Problem concerned with gametogenesis in Haemosporidiidea with particular reference to the genus Plasmodium. Parasitology, 45, 163.CrossRefGoogle Scholar
Chen, T. T. (1944). The nuclei in avian malaria parasites. I. The structure of nuclei in P. elongatum with some considerations on technique. Amer. J. Hyg. 40, 26.Google Scholar
Cleveland, L. R. (1949). Hormone-induced sexual cycles of flagellates. I. Gametogenesis, fertilisation and meiosis in Trichonympha. J. Morph. 85, 187.CrossRefGoogle ScholarPubMed
Coleman, L. C. (1938). Preparation of leuco-basic fuchsin for use in the Feulgen reaction. Stain Tech. 13, 123.Google Scholar
Darlington, C. D. & Lacour, L. F. (1947). The Handling of Chromosomes. London: George Allen and Unwin, Ltd.Google Scholar
Dobell, C. (1925). The life history of Aggregata eberthi (Protozoa: Sporozoa: Coccidia). Parasitology, 17, 2.CrossRefGoogle Scholar
Dobell, C. & Jameson, A. P. (1915). The chromosome cycle in Coccidia and Gregarines. Proc. Roy. Soc. B, 89, 83.Google Scholar
Garnham, P. C. C. (1951 a). The mosquito transmission of P. inui, Halberstaedter & Prowazek, and its pre-erythrocytic development in the liver of the rhesus monkey. Trans. R. Soc. Trop. Med. Hyg. 45, 45.CrossRefGoogle Scholar
Garnham, P. C. C. (1951 b). An attempt to find the vector of Hepatocystis (= Plasmodium) kochi (Levaditi & Schoen). Exp. Parasit. 1, 94.CrossRefGoogle Scholar
Garnham, P. C. C. & Lainson, R. (1957). Anopheles aztecus as a highly efficient vector of malaria parasites. Trans. R. Soc. Trop. Med. Hyg. 51, 6.Google Scholar
Garnham, P. C. C., Lainson, R. & Cooper, W. (1957). The tissue stages and sporongony of Plasmodium knowlesi. Trans. R. Soc. Trop. Med. Hyg. 51, 384.CrossRefGoogle ScholarPubMed
Grassi, B. (1900). Studi di uno Zoologo sulla Malaria. Mem. Accad. Lincei, no. 5, Caps. I and vn, pp. 21, 129.Google Scholar
Hauschka, T. S. (1943). The life cycle and chromosome cycle of the Coccidian, Adelina deronis. J. Morph. 73, 529.CrossRefGoogle Scholar
Ivanie, M. (1935). Über die zwei allerfrühesten Kernteilungsstadien des Tertianaparasiten (Plasmodium vivax Grassi et Feletti) und deren Bedeutung. Zbl. Bakt. Abt. 1, 133, 274.Google Scholar
Ivanie, M. (1936). Ein neuer Beweis für den ursprünglich promitotischen Charakter der Kemteilung beim Tertianaparasiten (Plasmodium vivax Grassi et Feletti). Zbl. Bakt. Abt. 1, 136, 109.Google Scholar
Ivanie, M. (1937). Neue Beiträge zur Kenntnis der promitotischen Kemteilung beim Tertianaparasiten (Plasmodium vivax Grassi et Feletti). Zbl. Bakt. Abt. 1, 138, 254.Google Scholar
Jameson, A. P. (1920). The chromosome cycle of Gregarines, with special reference to Diplocystis schneideri Kunstler. Quart. J. Micr. Sci. 64, 20.Google Scholar
Ludicke, M. & Piekarski, G. (1952). Über die Gametenbildung von Plasmodium falciparum (Welch, 1897). Zbl. Bakt. Abt. 1, 157, 522.Google Scholar
Macdougall, M. S. (1947). Cytological studies of Plasmodium: the male gamete. J. Nat. Malar. Soc. 6, 91.Google ScholarPubMed
Mackerras, M. J. & Ercole, Q. H. (1948). Observations on the development of the human malaria parasites in the mosquito. 1. Morphological changes. Aust. J. Exp. Biol. Med. Sci. 26, 439.CrossRefGoogle Scholar
Manwell, R. D. (1955). Some evolutionary possibilities in the history of the malaria parasites. Indian J. Malar. 9, 247.Google ScholarPubMed
Mesnil, F. (1899). Essai sur la classification et l'origine des sporozoaires. Cinquanten. d. I. Soc. Biol. vol. Jubil. 258.Google Scholar
Naville, A. (1927 a). Recherches sur le cycle évolutif et chromosomique de Klossia helicina (A. Schneider). Arch. Protistenk. 57, 427.Google Scholar
Naville, A. (1930). Recherches cytologiques sur les schizogrégarines. 1. Le cycle évolutif de Mattesia dispota n.g., n.sp. Z. Zellforsch. 11, 375.CrossRefGoogle Scholar
Phillips, N. E. & Mackinnon, D. L. (1946). Observations on a Monocystid gregarine, Apolocystis elongata n.sp. in the seminal vesicles of Eisenia foetida (Sav.). Parasitology, 37, 65.CrossRefGoogle Scholar
Reichenow, E. (1921). Die Hämogregarinen. Hand. Path. Prot. Edited by S., von Prowazek. Leipzig.Google Scholar
Schaudinn, F. (1899). Über den Generationswechsel der Coccidien und neuere Malariaforschung. S.B. Ges. Naturf. Fr. Berl. 159.Google Scholar
Schaudinn, F. (1902). Studien über krankheitserregende Protozoen. II. Plasmodium vivax (Grassi & Feletti) der Erreger des Tertianfiebers beiin Mensehen. Arb. GesundhAmt., Berl., 19, 169.Google Scholar
Wenyon, C. M. (1921). Part 1. The incidence and aetiology of malaria in Macedonia. J. R. Army Med. Corps, 37, 81.Google Scholar
Wenyon, C. M. (1926). Protozoology. A Manual for Medical Men, Veterinarians and Zoologists, vol. 2. London: Baillière Tindall and Cox.CrossRefGoogle Scholar
Wolcott, G. B. (1952). Mitosis in Trypanosoma lewisi. J. Morph. 90, 1.CrossRefGoogle Scholar
Wolcott, G. B. (1954). Nuclear structure and division in the malaria parasite, P. vivax. J. Morph. 94, 353.CrossRefGoogle Scholar
Wolcott, G. B. (1955). Chromosomes of the four species of human malaria. J. Hered. 46, 53.CrossRefGoogle Scholar
Wolcott, G. B. (1957). Chromosome studies in the genus Plasmodium. J. Protozoology, 4, 48.CrossRefGoogle Scholar