Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T02:09:27.988Z Has data issue: false hasContentIssue false

Contrasting detachment strategies in two congeneric ticks (Ixodidae) parasitizing the same songbird

Published online by Cambridge University Press:  22 December 2009

D. J. A. HEYLEN*
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020Antwerpen, Belgium
E. MATTHYSEN
Affiliation:
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020Antwerpen, Belgium
*
*Corresponding author: Tel: +32 3 265 34 70. Fax: +32 3 265 34 74. E-mail: [email protected]

Summary

In non-permanent parasites the separation from the host should take place in suitable habitats that allow the continuation of their life cycle. Furthermore, detachment strategies determine the parasites' dispersal capability, a characteristic on which epidemiological dynamics and the evolution of host specificity centre. In this study we experimentally investigate in the laboratory how 2 congeneric tick species, with contrasting habitat requirements, time detachment from one of their current songbird hosts (Parus major). Ixodes arboricola is a nidicolous tick, infesting bats and birds breeding or roosting in tree holes. Ixodes ricinus is a non-nidicolous generalist that parasitizes mammals, birds and even reptiles. We experimentally infested full-grown great tits, P. major, and found that I. arboricola detaches during the night, the moment when P. major sleeps in tree holes. In contrast, I. ricinus detaches during the day, the moment when birds are most active. In addition we found that all I. ricinus immatures left the birds within 5.5 days, while in I. arboricola the detachment time was long (up to 20 days) and highly variable. We discuss these findings with respect to their implications on the ticks' dispersal capability and host specificity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balashov, Y. S. (1972). Bloodsucking ticks (Ixodidea) – vectors of diseases of man and animals. Miscellaneous Publications of the Entomological Society of America 8, 159376.Google Scholar
Belozerov, V. N. (1982). Diapause and biological rhythms in ticks. In Physiology of Ticks (ed. Obenchain, F. D. and Galun, R.), pp. 469500. Pergamon Press, Oxford, UK.CrossRefGoogle Scholar
Boulinier, T., McCoy, K. D. and Sorci, G. (2001). Dispersal and parasitism. In Dispersal (ed. Clobert, J., Danchin, E., Dhondt, A. A. and Nichols, J. D.), pp. 203216. Oxford University Press, New York, USA.Google Scholar
Carroll, J. F. and Schmidtmann, E. T. (1996). Dispersal of blacklegged tick (Acari: Ixodidae) nymphs and adults at the woods-pasture interface. Journal of Medical Entomology 33, 554558.CrossRefGoogle ScholarPubMed
Clobert, J., Danchin, E., Dhondt, A. A. and Nichols, J. D. (Ed.) ( 2001). Dispersal. Oxford University Press, New York, USA.CrossRefGoogle Scholar
Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman & Hall, London, UK.Google Scholar
Dick, C. W. and Patterson, B. D. (2007). Against all odds: explaining high host specificity in dispersal-prone parasites. International Journal for Parasitology 37, 871876.CrossRefGoogle ScholarPubMed
Falco, R. C. and Fish, D. (1991). Horizontal movement of adult Ixodes-dammini (Acari, Ixodidae) attracted to Co2-Baited traps. Journal of Medical Entomology 28, 726729.CrossRefGoogle ScholarPubMed
Gandon, S. (1999). Kin competition, the cost of inbreeding and the evolution of dispersal. Journal of Theoretical Biology 200, 345364.CrossRefGoogle ScholarPubMed
Gosler, A. (1993). The Great Tit. Hamlyn, London, UK.Google Scholar
Gray, J. S. (1985). A carbon dioxide trap for prolonged sampling of Ixodes ricinus. Experimental & Applied Acarology 1, 3544.CrossRefGoogle ScholarPubMed
Gray, J. S. (1998). The ecology of ticks transmitting lyme borreliosis. Experimental and Applied Acarology 22, 249258.CrossRefGoogle Scholar
Haarlov, N. (1962). Variation in ixodid tick, Ixodes Arboricola Schulze and Schlottke 1929. Parasitology 52, 425439.CrossRefGoogle Scholar
Hamilton, W. D. and May, R. M. (1977). Dispersal in stable habitats. Nature, London 269, 578581.CrossRefGoogle Scholar
Heylen, D. J. A. and Matthysen, E. (2008). Effect of tick parasitism on the health status of a passerine bird. Functional Ecology 22, 10991107.CrossRefGoogle Scholar
Heylen, D. J. A., Madder, M. and Matthysen, E. (2009). Lack of resistance against the tick Ixodes ricinus in two related passserine bird species. International Journal for Parasitology (In the Press).Google Scholar
Hillyard, P. D. (1996). Ticks of North-West Europe. Backhuys Publishers, London, UK.Google Scholar
Hopper, K. R. (1999). Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology 44, 535560.CrossRefGoogle ScholarPubMed
Hudde, H. and Walter, G. (1988). Verbreitung und Wirtswahl der Vogelzecke Ixodes arboricola (Ixodoidea, Ixodidae) in der Bundesrepublik Deutschland. Vogelwarte 34, 201207.Google Scholar
Jongejan, F. and Uilenberg, G. (2004). The global importance of ticks. Parasitology 129, S3–S14.CrossRefGoogle ScholarPubMed
Kahl, O. and Knülle, W. (1988). Water vapour uptake from subsaturated atmosphere by engorged immature ixodid ticks. Experimental and Applied Acarology 4, 7383.CrossRefGoogle ScholarPubMed
Kempenaers, B. and Dhondt, A. A. (1991). Competition between Blue and Great Tit for roosting sites in winter: an aviary experiment. Ornis Scandinavica 22, 7375.CrossRefGoogle Scholar
Klompen, J. S. H., Black, W. C., Keirans, J. E. and Oliver, J. H. (1996). Evolution of ticks. Annual Review of Entomology 41, 141161.CrossRefGoogle ScholarPubMed
Kluyver, H. N. (1957). Roosting habits, sexual dominance and survival in the Great Tit. Cold Spring Harbor Symposia on Quantitative Biology 22, 281285.CrossRefGoogle Scholar
Knülle, W. and Rudolph, D. (1982). Humidity relationships and water balance of ticks. In Physiology of Ticks, Vol. 1 (ed. Obenchain, F. D. and Galun, R.), pp. 4370. Pergamon Press Ltd, Oxford, UK.CrossRefGoogle Scholar
Lees, A. D. (1948). The sensory physiology of the sheep tick, Ixodes ricinus L. Journal of Experimental Biology 25, 145207.CrossRefGoogle Scholar
Literak, I., Kocianova, E., Dusbabek, F., Martinu, J., Podzemny, P. and Sychra, O. (2007). Winter infestation of wild birds by ticks and chiggers (Acari: Ixodidae, Trombiculidae) in the Czech Republic. Parasitology Research 101, 17091711.CrossRefGoogle ScholarPubMed
Magalhaes, S., Forbes, M. R., Skoracka, A., Osakabe, M., Chevillon, C. and McCoy, K. D. (2007). Host race formation in the Acari. Experimental and Applied Acarology 42, 225238.CrossRefGoogle ScholarPubMed
Mather, T. N. and Spielman, A. (1986). Diurnal detachment of immature deer ticks (Ixodes-dammini) from nocturnal hosts. American Journal of Tropical Medicine and Hygiene 35, 182186.CrossRefGoogle ScholarPubMed
Matuschka, F. R., Richter, D., Fischer, P. and Spielman, A. (1990). Time of repletion of subadult Ixodes-ricinus ticks feeding on diverse hosts. Parasitology Research 76, 540544.CrossRefGoogle ScholarPubMed
McCoy, K. D., Boulinier, T., Tirard, C. and Michalakis, Y. (2003). Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57, 288296.Google ScholarPubMed
Mejlon, H. A. and Jaenson, T. G. T. (1997). Questing behaviour of Ixodes ricinus (Acari: Ixodidae). Experimental and Applied Acarology 21, 247255.CrossRefGoogle Scholar
Milne, A. (1950 a). The ecology of sheep tick Ixodes ricinus L. Microhabitat economy of the adult tick. Parasitology 40, 1434.CrossRefGoogle ScholarPubMed
Milne, A. (1950 b). The ecology of the sheep tick, Ixodes ricinus L. Spatial distribution. Parasitology 40, 3545.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn.Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Price, P. W. (1980). Evolutionary Biology of Parasites, Princeton University Press, Princeton, NJ, USA.Google ScholarPubMed
Rechav, Y. (1992). Naturally acquired resistance to ticks – a global view. Insect Science and its Application 13, 495504.Google Scholar
Shu, Y. and Klein, J. P. (1999). A SAS macro for the positive stable frailty model. In Proceedings of the Statistical Computing Section, pp. 4752. American Statistical Association, Baltimore, MD, USA.Google Scholar
Sonenshine, D. E. (1993). Biology of Ticks. Oxford Univerity Press, New York, USA.Google Scholar
Varma, M. G. R., Hellerhaupt, A., Trinder, P. K. E. and Langi, A. O. (1990). Immunization of guinea-pigs against Rhipicephalus-appendiculatus adult ticks using homogenates from unfed immature ticks. Immunology 71, 133138.Google ScholarPubMed