Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T01:45:46.696Z Has data issue: false hasContentIssue false

Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin

Published online by Cambridge University Press:  06 April 2009

E. P. Rock
Affiliation:
Howard Hughes Medical Institute, Bethesda, Maryland 20814, USA
K. Marsh
Affiliation:
Medical Research Council Laboratories, Fajara, GM
A. J. Saul
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
T. E. Wellems
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
Diane W. Taylor
Affiliation:
Department of Biology, Georgetown University, Washington, D.C. 20057, USA
W. L. Maloy
Affiliation:
Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health
R. J. Howard*
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
*
*Reprint requests to: Dr Russell J. Howard, NIH, Building 5, Room 112, Bethesda, Maryland 20892, USA.

Summary

Plasmodium falciparum-infected erythrocytes (IRBC) synthesize 3 histidine-rich proteins: HRP-I or the knob-associated HRP, HRP-II and HRP-III or SHARP. In order to distinguish these proteins immunochemically we prepared monoclonal antibodies which react with HRP-I, HRP-II and HRP-III, and rabbit antisera against synthetic peptides derived from the HRP-II and HRP-III sequences. A comparative analysis of diverse P. falciparum parasites was made using these antibodies and immunoprecipitation or Western blotting. HRP-I (Mr 80000–115000) was identified in all knob-positive P. falciparum parasites including isolates examined directly from Gambian patients. However, this protein was of lower abundance in these isolates and in 6 knob-positive, culture-adapted parasites compared to Aotus monkey-adapted parasites or culture-adapted parasites studied previously. HRP-II (Mr 60000–105000) was identified in all P. falciparum parasites regardless of knob-phenotype, and was recovered from culture supernatants as a secreted water-soluble protein. Within IRBC, HRP-II was found as a complex of several closely spaced bands. Cell surface radio-iodination of IRBC from several isolates and immunoprecipitation with a rabbit antiserum against the HRP-II repeat sequence identified HRP-II as a surface-exposed protein. Like HRP-I, the abundance of HRP-II was lower in the Gambian isolates than with Aotus monkey-adapted parasites studied earlier. Neither HRP-I nor HRP-II were identified in a knob-positive isolate of P. malariae collected from a Gambian patient. Analogues of these HRP were also absent from asexual parasites of diverse primate and murine malaria species screened with this panel of antibodies. HRP-III (Mr 40000–55000) was distinguished by its lower apparent size and by specific reaction with rabbit antibody against its 5-mer repeat sequence. HRP-III was of lowest abundance compared with the other two HRP. These antibody reagents and distinguishing properties should prove useful in studies on the separate functions of the 3 P. falciparum HRP.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, M., Miller, L. H. & Rabbege, J. (1975). Caveola-vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P. cynomolgi. American Journal of Pathology 79, 285–94.Google ScholarPubMed
Aley, S. B., Sherwood, J. A. & Howard, R. J. (1984). Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes. Journal of Experimental Medicine 160, 1585–90.CrossRefGoogle ScholarPubMed
Burkot, T. R., Williams, J. L. & Schneider, I. (1984). Infectivity to mosquitoes of Plasmodium falciparum clones grown in vitro from the same isolate. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 339–41.CrossRefGoogle ScholarPubMed
Culvenor, J. G., Langford, C. J., Crewther, P. E., Saint, R. B., Coppel, R. L., Kemp, D. J., Anders, R. F. & Brown, G. V. (1987). Plasmodium falciparum: Identification and localization of a knob protein antigen expressed by a cDNA clone. Experimental Parasitology 63, 5867.CrossRefGoogle ScholarPubMed
Fraker, P. J. & Speck, J. C. (1978). Protein and cell membrane iodinations with a sparingly soluble chloramide 1, 3, 4, 6-tetrachloro 3α, 6α-diphenyl glycoluril. Biochemical and Biophysical Research Communications, 80, 849–57.CrossRefGoogle Scholar
Grant, P. T. & Fulton, J. D. (1957). The catabolism of glucose by strains of Trypanosoma rhodesiense. Journal of Biochemistry 66, 242–50.CrossRefGoogle ScholarPubMed
Green, T. J., Gadsden, G., Seed, T., Jacobs, R., Morhardt, M. & Brackett, R. (1985). Cloning and characterization of Plasmodium falciparum FCR-3/FMG strain. American Journal of Tropical Medicine and Hygiene 34, 2430.CrossRefGoogle ScholarPubMed
Hadley, T. J., Leech, J. H., Green, T. J., Daniel, W. A., Wahlgren, M., Miller, L. H. & Howard, R. J. (1983). Plasmodium falciparum: A comparison of knobby (K +) and knobless (K –) parasites of two strains. Molecular and Biochemical Parasitology 9, 271–8.CrossRefGoogle ScholarPubMed
Howard, R. J. & Barnwell, J. W. (1984). Solubilization and immunoprecipitation of 125I-labelled antigens from Plasmodium knowlesi schizont-infected erythrocytes using non-ionic, anionic and zwitterionic detergents. Parasitology 88, 2736.CrossRefGoogle ScholarPubMed
Howard, R. J., Kao, V. & Barnwell, J. W. (1984). Protein antigens of Plasmodium knowlesi clones of different variant antigen phenotype. Parasitology 88, 221–37.CrossRefGoogle ScholarPubMed
Howard, R. J., Lyon, J. A., Uni, S., Saul, A. J., Aley, S. B., Klotz, F., Panton, L. J., Sherwood, J. A., Marsh, K., Aikawa, M. & Rock, E. P. (1987). Transport of a M r ~ 300000 Plasmodium falciparum protein (Pf EMP2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. Journal of Cell Biology 104, 1269–80.CrossRefGoogle Scholar
Howard, R. J., Raum, M. G., Maloy, W. L., Kao, V. & Coligan, J. E. (1984). N-terminal amino acid sequence of the histidine-rich protein from Plasmodium lophurae. Molecular and Biochemical Parasitology 12, 237–46.CrossRefGoogle ScholarPubMed
Howard, R. J., Uni, S., Aikawa, M., Aley, S. B., Leech, J. H., Lew, A.M., Wellems, T. E., Rener, J. & Taylor, D. W. (1986). Secretion of a malarial histidine-rich protein (HRP-II) from Plasmodium falciparum-infected erythrocytes. Journal of Cell Biology 103, 1269–77.CrossRefGoogle ScholarPubMed
Kilejian, A. (1974). A unique histine-rich polypeptide from the malaria parasite, Plasmodium lophurae. Journal of Biological Chemistry 249, 4650–5.CrossRefGoogle Scholar
Kilejian, A. (1979). Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 76, 4650–3.CrossRefGoogle ScholarPubMed
Kilejian, A. (1980). Homology between a histidine-rich protein from Plasmodium lophurae and a protein associated with the knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Journal of Experimental Medicine 151, 1534–8.CrossRefGoogle Scholar
Kilejian, A. (1984). The biosynthesis of the knob protein and a 65000 Dalton histidine-rich poly-peptide of Plasmodium falciparum. Molecular and Biochemical Parasitolgy 12, 185–94.CrossRefGoogle Scholar
Kilejian, A. & Rosenbaum, S. (1985). Reactivity of a monoclonal antibody produced to the histidine-rich protein of Plasmodium lophurae with Plasmodium falciparum. Molecular and Biochemical Parasitology 17, 155–62.CrossRefGoogle Scholar
Kilejian, A., Sharma, Y. D., Karoui, H. & Naslund, L. (1986). Histidine-rich domain of the knob protein of the human malaria parasite Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 83, 7938–41.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418–20.CrossRefGoogle ScholarPubMed
Leech, J. H., Barnwell, J. W., Aikawa, M., Miller, L. H. & Howard, R. J. (1984). Plasmodium falciparum malaria: Association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. Journal of Cellular Biology 98, 1256–64.CrossRefGoogle ScholarPubMed
Meryman, H. T. & Hornblower, M. (1972). A method for freezing and washing red blood cells using a high glycerol concentration. Transfusion 12, 145–56.CrossRefGoogle ScholarPubMed
Ravetch, J. V., Feder, R., Pavlovec, A. & Blobel, G. (1984). Primary structure and genomic organization of the histidine-rich protein of the malarial parasite Plasmodium lophurae. Nature, London 312, 616–20.CrossRefGoogle Scholar
Roberts, D. D., Sherwood, J. A., Spitalnik, S. L., Panton, L. J., Howard, R. J., Dixit, V. M., Frazier, W. A.Miller, L. H. & Ginsburg, V. (1985). Thrombospondin binds falciparum parasitized erythrocytes and may mediate cytoadherence. Nature, London 318, 64–6.CrossRefGoogle ScholarPubMed
Schulz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure. New York and Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Smith, D. H. & Theakston, R. D. G. (1970). Comments on the ultrastructure of human erythrocytes infected with Plasmodium malariae. Annals of Tropical Medicine and Parasitology 64, 329–31.CrossRefGoogle ScholarPubMed
Stahl, H. D., Kemp, D. J., Crewther, P. E., Scanlon, D. B., Woodrow, G., Brown, G. V., Bianco, A. E., Anders, R. F., Coppel, R. L. (1985). Sequence of a cDNA encoding a small polymorphic histidine and alanine-rich protein from Plasmodium falciparum. Nucleic Acids Research 13, 7837–46.CrossRefGoogle ScholarPubMed
Taylor, D. W., Parra, M., Chapman, G. B., Stearns, M. E., Rener, J., Aikawa, M., Uni, S., Aley, S. B., Panton, L. J. & Howard, R. J. (1987). Localization of Plasmodium falciparum histidine-rich Protein 1 in the erythrocyte skeleton under knobs. Molecular and Biochemical Parasitology (in the Press.)CrossRefGoogle ScholarPubMed
Towbin, H., Staehlin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Science USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
Udeinya, I. J., Graves, P.M., Carter, R., Aikawa, M. & Miller, L. H. (1983). Plasmodium, falciparum: Effect of time in continuous culture on binding to human endothelial cells and amelanotic melanoma cells. Experimental Parasitology 56, 207–13.CrossRefGoogle ScholarPubMed
Vernot-Hernandez, J. P. & Heidrich, H. G. (1984). Time-course of synthesis, transport and incorporation of a protein identified in purified membranes of host erythrocytes infected with a knob-forming strain of Plasmodium falciparum. Molecular and Biochemical Parasitology 12, 337–50.CrossRefGoogle ScholarPubMed
Vernot-Hernandez, J. P. & Heidrich, H. G. (1985). The relationship to knobs of the 92000 D protein specific for knobby strains of Plasmodium falciparum. Zeitschrift für Parasitenkunde 71, 4151.CrossRefGoogle Scholar
Walliker, D., Carter, R., Quakyi, I. A., Wellems, T. E., McCutchan, T. F. & Szarfmann, A. (1986). Genetics of Plasmodium falciparum. In Molecular Strategies of Parasitic Invasion, UCLA Symposium on Molecular and Cellular Biology, New Series, vol. 42, (ed. Agabian, N., Goodman, H. and Noguiera, N.). New York: Alan R. Liss, Inc.Google Scholar
Wellems, T. E. & Howard, R. J. (1986). Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 83, 6065–9.CrossRefGoogle Scholar
Wellems, T. E., Walliker, D., Smith, C. L., do Rosario, V. E., Maloy, W. L., Howard, R. J., Carter, R. & McCutchan, T. F. (1987). A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell (in the Press.)CrossRefGoogle Scholar