Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T13:45:00.105Z Has data issue: false hasContentIssue false

Cloning and characterization of a muscle isoform of a Na,K-ATPase alpha subunit (SNaK1) from Schistosoma mansoni

Published online by Cambridge University Press:  28 November 2001

P. J. SKELLY
Affiliation:
Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
P. M. DOUGAN
Affiliation:
Parasitology Research Group, School of Biology and Biochemistry, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
A. MAULE
Affiliation:
Parasitology Research Group, School of Biology and Biochemistry, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
T. A. DAY
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
C. B. SHOEMAKER
Affiliation:
Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA

Abstract

A cDNA encoding a Na,K-ATPase alpha subunit homologue, designated SNaK1, was isolated from an adult cDNA library of Schistosoma mansoni. The 3.8 kb DNA contained a 3021 bp open reading frame potentially encoding a 1007 amino acid protein that had an Mr of 111817 and a pI of 5.48. Homology searches for SNaK1 revealed approximately 70% sequence identity with a variety of Na,K-ATPases from evolutionarily diverse organisms. SNaK1 is predicted to contain 10 transmembrane regions typical of this protein family as well as other conserved domains, such as the phosphorylation site and ATP binding domain. Antibodies raised against an amino terminal peptide detected the protein in membrane preparations of eggs, cercariae and adult males and females, suggesting a general role for SNaK1. The mobility of the protein differed in various life-stages suggestive of post-transcriptional or post-translational modification. Immunolocalization of SNaK1 in sections of adult worms using epifluorescence and electron microscopy, revealed antibody labelling in the subtegumental and peripheral layers. Strong staining was discernible in the peripheral muscle band indicating that SNaK1 plays a central role in muscle contraction in adult parasites and may be the primary target of ouabain action. Staining was also detected in the secretory bodies in sections of ducts in this region and over the RER of the presumed gastrodermis. Immunogold labelling was also localized over neuronal vesicles in axons associated with the peripheral muscle layer.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALTSCHUL, S. F., MADDEN, T. L., SCHAFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W. & LIPMAN, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.CrossRefGoogle Scholar
BLANCO, G., KOSTER, J. C. & MERCER, R. W. (1994). The alpha subunit of the Na,K-ATPase specifically and stably associates into oligomers. Proceedings of the National Academy of Sciences, USA 91, 85428546.CrossRefGoogle Scholar
BRICKER, C. S., PAX, R. A. & BENNETT, J. L. (1982). Microelectrode studies of the tegument and sub-tegumental compartments of male Schistosoma mansoni: anatomical location of sources of electrical potentials. Parasitology 85, 149161.CrossRefGoogle Scholar
DE MENDONCA, R. L., BECK, E., RUMJANEK, F. D. & GOFFEAU, A. (1995). Cloning and characterization of a putative calcium-transporting ATPase gene from Schistosoma mansoni. Molecular and Biochemical Parasitology 72, 129139.CrossRefGoogle Scholar
FAGAN, M. J. & SAIER, M. H. (1994). P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. Journal of Molecular Evolution 38, 5799.CrossRefGoogle Scholar
FARLEY, R. A., TRAN, C. M., CARILLI, C. T., HAWKE, D. & SHIVELY, J. E. (1984). The amino acid sequence of a fluorescein-labeled peptide from the active site of (Na,K)-ATPase. Journal of Biological Chemistry 259, 95329535.Google Scholar
FETTERER, R. H., PAX, R. A. & BENNETT, J. L. (1980). Schistosoma mansoni: characterization of the electrical potential from the tegument of adult males. Experimental Parasitology 49, 353365.CrossRefGoogle Scholar
FETTERER, R. H., PAX, R. A. & BENNETT, J. L. (1981). Na+-K+ transport, motility and tegumental membrane potential in adult male Schistosoma mansoni. Parasitology 82, 97109.CrossRefGoogle Scholar
HACKETT, F. (1993). The culture of Schistosoma mansoni and production of life cycle stages. In Protocols in Molecular Parasitology, Vol. 21 (ed. HYDE, J. E.), pp. 8999. Humana Press, New Jersey.CrossRef
HARLOW, E. & LANE, D. (1988). Antibodies: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
HORISBERGER, J. D., LEMAS, V., KRAEHENBUHL, J. P. & ROSIER, B. C. (1991). Structure-function relationship of Na,K-ATPase. Annual Review of Physiology 53, 565584.CrossRefGoogle Scholar
MCLAREN, D. J. (1984). Disguise as an evasive stratagem of parasitic organisms. Parasitology 88, 597611.CrossRefGoogle Scholar
NECHAY, B. R., HILLMAN, G. R. & DOTSON, M. J. (1980). Properties and drug sensitivity of adenosine triphosphatases from Schistosoma mansoni. Journal of Parasitology 66, 596600.CrossRefGoogle Scholar
NOEL, F. & SOARES DE MOURA, R. (1986). Schistosoma mansoni: preparation, characterization of (Na+/K+)ATPase from tegument and carcass. Experimental Parasitology 62, 298307.CrossRefGoogle Scholar
OVCHINNIKOV YU, A., DZHANDZHUGAZYAN, K. N., LUTSENKO, S. V., MUSTAYEV, A. A. & MODYANOV, N. N. (1987). Affinity modification of E1-form of Na+,K+-ATPase revealed Asp-710 in the catalytic site. FEBS Letters 217, 111116.CrossRefGoogle Scholar
PARDON, R. S. & NOEL, F. (1994). Heterogeneity of ouabain binding sites in Schistosoma mansoni. First evidence for the presence of two (Na++K+)-ATPase isoforms in platyhelminths. Biochemical Pharmacology 47, 331336.CrossRefGoogle Scholar
PEARCE, E. J., ZILBERSTEIN, D., JAMES, S. L. & SHER, A. (1986). Kinetic correlation of the acquisition of resistance to immune attack in schistosomula of Schistosoma mansoni with a developmental change in membrane potential. Molecular and Biochemical Parasitology 21, 259267.CrossRefGoogle Scholar
PODESTA, R. B. & MCDIARMID, S. S. (1982). Enrichment and partial enzyme characterization of ATPase activity associated with the outward-facing membrane complex and inward-facing membrane of the surface epithelial syncytium of Schistosoma mansoni. Molecular and Biochemical Parasitology 6, 225235.CrossRefGoogle Scholar
PRICE, E. M. & LINGREL, J. B. (1988). Structure-function relationships in the Na,K-ATPase alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry 27, 84008408.CrossRefGoogle Scholar
PRICE, E. M., RICE, D. A. & LINGREL, J. B. (1990). Structure-function studies of Na,K-ATPase. Site-directed mutagenesis of the border residues from the H1-H2 extracellular domain of the alpha subunit. Journal of Biological Chemistry 265, 66386641.Google Scholar
SANGER, F., NICKLEN, S. & COULSON, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 54635467.CrossRefGoogle Scholar
SHAW, M. K. (1987). Schistosoma mansoni: fine structural localization of tegumental adenosine triphosphatases. Experimental Parasitology 64, 310321.CrossRefGoogle Scholar
SHER, A. & MOSER, G. (1981). Schistosomiasis: immunologic properties of developing schistosomula. American Journal of Pathology 102, 121126.Google Scholar
SKELLY, P. J., PFEIFFER, R., VERREY, F. & SHOEMAKER, C. B. (1999). SPRM1lc, a heterodimeric amino acid permease light chain of the human parasitic platyhelminth, Schistosoma mansoni. Parasitology 119, 569576.CrossRefGoogle Scholar
TARRAB-HAZDAI, R., CAMACHO, M., MENDELOVIC, F. & SCHECHTMAN, D. (1997). An association between activity of the Na/K-pump and resistance of Schistosoma mansoni towards complement-mediated killing. Parasite Immunology 19, 395400.CrossRefGoogle Scholar
TARRAB-HAZDAI, R., SAGI-EISENBERG, R., BRENNER, V. & ARNON, R. (1986). Ion fluxes changes during early stages of Schistosoma mansoni. Evaluation of complement effect. European Journal of Biochemistry 154, 563568.Google Scholar
TAYLOR, D. W. & WELLS, P. Z. (1984). Isolation and antigen analysis of surface tegument membranes from schistosomula of Schistosoma mansoni. Parasitology 89, 495510.CrossRefGoogle Scholar
WHITE, M. K. & WEBER,  M. J. (1989). Leucine-zipper motif update. Nature, London 340, 103104.CrossRefGoogle Scholar
ZHONG, C., SKELLY, P. J., LEAFFER, D., COHN, R. G., CAULFIELD, J. P. & SHOEMAKER, C. B. (1995). Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transporter to the basal, but not the apical, membranes of the surface syncytium. Parasitology 110, 383394.CrossRefGoogle Scholar