Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T04:29:06.556Z Has data issue: false hasContentIssue false

Characterization of the relationships in the pinewood nematode species complex (PWNSC) (Bursaphelenchus spp.) using a heterologous unc-22 DNA probe from Caenorhabditis elegans

Published online by Cambridge University Press:  06 April 2009

P. Abad
Affiliation:
I.N.R.A. Station de Nématologie et de Génétique Moléculaire des Invertébrés, 123, Bld F. Meilland, 06606 Antibes Cedex
S. Tares
Affiliation:
I.N.R.A. Station de Nématologie et de Génétique Moléculaire des Invertébrés, 123, Bld F. Meilland, 06606 Antibes Cedex
N. Brugier
Affiliation:
I.N.R.A. Station de Nématologie et de Génétique Moléculaire des Invertébrés, 123, Bld F. Meilland, 06606 Antibes Cedex
G. De Guiran
Affiliation:
I.N.R.A. Station de Nématologie et de Génétique Moléculaire des Invertébrés, 123, Bld F. Meilland, 06606 Antibes Cedex

Summary

Pine wilt is the most serious disease of native pines in Japan and potentially the most important nematode disease of conifers in the world. The pinewood nematode Bursaphelenchus xylophilus was found to be the causal agent. Difficulties arose with respect to the precise identity of some isolates of B. xylophilus and of similar species B. mucronatus and B. fraudulentus. Restriction enzyme analyses of repetitive DNA revealed bands specific for the species B. xylophilus, B. mucronatus and B. fraudulentus. Hybridization patterns obtained with unc-22 gene of C. elegans, clearly identified B. xylophilus, B. mucronatus and B. fraudulentus as well as the different geographic isolates of these species. Furthermore, it is possible to define the phylogenetic relationships between the different populations constituting the ‘pine wood nematode’ complex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benian, G. M., Kiff, J. E., Neckelmann, N., Moerman, D. G. & Waterson, R. H. (1989). Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature, London 342, 4550.Google Scholar
Bolla, R. T., Weaver, C. & Winter, E. K. (1988). Genomic differences among pathotypes of Bursaphelenchus xylophilus. Journal of Nematology 20, 309–16.Google Scholar
Burrows, P. R. & Perry, R. N. (1988). Two cloned DNA fragments which differentiate Globodera pallida from G. rostochiensis. Revue de Nématologie 11, 441–5.Google Scholar
Burrows, P. R. (1990). The rapid and sensitive detection of the plant parasitic nematode Globodera pallida using a non-radioactive biotinylated DNA probe. Revue de Nématologie 13, 185–90.Google Scholar
Curran, J., McClure, M. A. & Webster, J. M. (1986). Genotypic differentiation of Meloidogyne populations by detection of restriction fragment length difference in total DNA. Journal of Nematology 18, 83–6.Google Scholar
De Guiran, G. & Bruguier, N. (1989). Hybridization and phylogeny of the pine wood nematode (Bursaphelenchus spp.). Nematologica 35, 321–30.Google Scholar
De Guiran, G., Lee, M. J., Dalmasso, A. & Bongiovanni, M. (1985). Preliminary attempt to differentiate pinewood nematodes (Bursaphelenchus spp.) by enzyme electrophoresis. Revue de Nématologie 8, 8592.Google Scholar
De Jong, A. J., Bakker, J., Roos, M. & Gommers, F. J. (1989). Repetitive DNA and hybridization patterns demonstrate extensive variability between the sibling species Globodera rostochiensis and G. pallida. Parasitology 99, 133–8.Google Scholar
Dowsett, A. P. & Young, M. W. (1982). Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proceedings of the National Academy of Sciences, USA 79, 4570–4.Google Scholar
Dropkin, V. H. & Foudin, A. S. (1979). Report of the occurrence of Bursaphelenchus lignocolus induced pine wilt disease in Missouri. Plant Disease Report 63, 904–5.Google Scholar
Emmons, S. W., Klass, M. R. & Hirsh, D. (1979). Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 76, 1333–7.Google Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.Google Scholar
Kiyohara, T. & Tokushige, Y. (1971). Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. Journal of Japanese Forestry Society 53, 210–18.Google Scholar
Li, G. W. (1983). Discovery of and preliminary investigation on pine wood nematodes in China. Forest Science and Technology 7, 25–8.Google Scholar
Link, C., Graf-WISTEL, J. & Wood, W. B. (1987). Isolation and characterization of a nematode transposable element from Panagrellus redivivus. Proceedings of the National Academy of Sciences, USA 84, 5325–9.Google Scholar
Majiwa, P. A. O. & Webster, P. (1987). A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense. Parasitology 95, 137–44.Google Scholar
Mamiya, Y. & Enda, N. (1979). Bursaphelenchus mucronatus n. sp. (Nematoda: Aphelenchoididae) from pine wood and its biology and pathogenicity to pine tree. Nematologica 25, 353–61.Google Scholar
Mamiya, Y. & Kiyohara, T. (1972). Description of Bursaphelenchus lignicolus n. sp. (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica 18, 120–4.Google Scholar
Maniatis, T., Fritsch, E. J. & Sambrook, J. (1982). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
McLain, D. K., Rai, K. S. & Fraser, M. J. (1987). Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup. Heredity 58, 373–81.Google Scholar
McReynolds, D. A., Desimone, S. M. & Williams, S. A. (1986). Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academy of Sciences, USA 53, 797801.Google Scholar
Natvig, D. O. & Jackson, D. A. (1987). Random-fragment hybridization analysis of evolution in the genus Neurospora: the status of four-spored strains. Evolution 41, 1003–21.Google Scholar
Radice, A. D., Powers, T. O., Sandall, L. J. & Riggs, R. D. (1988). Comparison of mitochondrial DNA from the sibling species Heterodera glycines and H. schachtii. Journal of Nematology 18, 83–6.Google Scholar
Smith, G. E. & Summers, M. D. (1980). The bidirectional transfer of DNA and RNA to nitrocellulose or diabenzylomethyl-paper. Analytical Biochemistry 109, 123–9.Google Scholar
Steiner, G. & Buhrer, E. M. (1934). Aphelenchoides xylophilus n. sp. a nematode associated with bluestain and other fungi in timber. Journal of Agricultural Research 48, 949–51.Google Scholar
Webster, J. M., Anderson, R. V., Baillie, D. L., Beckenbach, K., Curran, J. & Rutherford, T. A. (1990). DNA probes for differentiating isolates of the pine wood nematode species complex. Revue de Nématologie 13, 255–63.Google Scholar
Wingfield, M. J., Blanchette, A. & Kondo, E. (1983). Comparison of the pine wood nematode, Bursaphelenchus xylophilus from pine and balsam fir. European Journal of Forest Pathology 13, 360–73.Google Scholar