Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T16:08:49.292Z Has data issue: false hasContentIssue false

Characterization of major surface and excretory-secretory immunogens of Trypanosoma cruzi trypomastigotes and identification of potential protective antigen

Published online by Cambridge University Press:  06 April 2009

M. A. Ouaissi
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
A. Taibi
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
J. Cornette
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
P. Velge
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
B. Marty
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
M. Loyens
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
M. Esteva
Affiliation:
Instituto Nacional de Diagnostico e Investigation de la Enfermedad de Chagas, Buenos Aires, Argentina
F. S. Rizvi
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France
A. Capron
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM 167 CNRS 624, Institut Pasteur, 59019 Lille, France

Summary

The surface antigens of Trypanosoma cruzi trypomastigotes were identified by immunoprecipitation and were compared with metabolically labelled excretory—secretory products (ES) released by the parasites in vitro. A series of major immunogenic components in the ES antigens were revealed (160 kDa, 130 kDa and 80–110 kDa). The trypomastigote surface also bears the 130 kDa band and the 80–110 kDa complex. Competition experiments demonstrated the common antigenic structure of the ES and the surface antigens. Two-dimensional analysis of ES antigens immunoprecipitated by human Chagasic serum revealed several spots in the 80–110 kDa region with a wide range of isoelectric points (PI between 5·4 and 6·7). This reflects a charge heterogeneity of these polypeptides. The trypomastigote 85 kDa polypeptide was also identified in the ES antigens by using a monoclonal antibody against this antigen. Two-dimensional analysis of the 85 kDa proteins shed from the surface of trypomastigotes and immunoprecipitated by the monoclonal antibody 155D3 showed 2 major spots: a major part of the 85 kDa polypeptide was found at pH 6·5–6·6, whereas a substantial amount of the antigen was found at pH 5·7. An additional component with molecular weight of approximately 58 kDa and isoelectric points of 6·5 and 6·6, was also visualized. Detection of the 85 kDa polypeptide circulating in serum from patients with acute and chronic Chagas' disease was achieved using an enzyme-linked immunosorbent assay. In addition, the data obtained showed that a polyclonal antibody to the 85 kDa polypeptide could be used to passively induce a partial protection of Fischer rats against acute lethal infection. Thus, the antigens recognized by polyclonal antibody appear to play a role in the development of protective immunity against T. cruzi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuin, G., Goncalves, M. F., Alves, M. J. M. & Colli, W. (1986). Variations in Tc-85 molecular size. Memorias Instituto Oswaldo Cruz 81, 88 (Abstract).Google Scholar
Affranchino, J. L., Ibanez, C. F., Luquetti, A. O., Rassi, A., Reyes, M. B., Macina, R. A., Aslund, L., Pettersson, U. & Frasch, A. C. C. (1989). Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas' disease. Molecular and Biochemical Parasitology 34, 221–8.CrossRefGoogle ScholarPubMed
Andrews, N. W., Katzin, A. M. & Colli, W. (1984). Mapping of surface glycoproteins ofTrypanosoma cruzi by two-dimensional electrophoresis. A correlation with the cell invasion capacity. European Journal of Biochemistry 140, 599604.CrossRefGoogle Scholar
Araujo, F. G. (1986). Analysis of Trypanosoma cruzi antigens bound by specific antibodies to related trypanosomatids. Infection and Immunity 53, 179–85.CrossRefGoogle ScholarPubMed
Beard, C. A., Wrightsman, R. A. & Manning, J. E. (1985). Identification of monoclonal antibodies against the trypomastigote stage of Trypanosoma cruzi by use of iminobiotinylated surface polypeptides. Molecular and Biochemical Parasitology 16, 199212.CrossRefGoogle ScholarPubMed
Brener, Z. (1982). Recent developments in the field of Chagas' disease. Bulletin of the World Health Organization 60, 463.Google ScholarPubMed
Delplace, P., Dubremetz, J. F., Fortier, B. & Vernes, A. (1985). A 50 Kilodalton exoantigen specific to the merozoite release-reinvasion stage of Plasmodium falciparum. Molecular and Biochemical Parasitology 17, 239–51.CrossRefGoogle Scholar
Dragon, I. A., Brothers, V. M., Wrightsman, R. A. & Manning, J. (1985). A Mr 90000 surface polypeptide ofTrypanosoma cruzi as a candidate for a Chagas' disease diagnostic antigen. Molecular and Biochemical Parasitology 16, 213–29.CrossRefGoogle Scholar
Fischer, E., Ouaissi, M. A., Velge, P., Cornette, J. & Kazatchkine, M. D. (1988). gp 58/68 a parasite component which contributes to the escape of the trypomastigote form of Trypanosoma cruzi from damage by the human alternative complement pathway. Immunology 65, 299303.Google Scholar
Gabrielsen, A. A., Jensen, J. B. & Boland, M. T. (1983). Identification and partial characterization of exoantigens derived from medium used to culture Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 32, 671–67.CrossRefGoogle ScholarPubMed
Garrels, J. I. Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. Journal of Biological Chemistry 254, 7961–77.CrossRefGoogle Scholar
Jaffe, C. L., Grimaldi, G. & Pratt, Mcmahon (1984). The cultivation and cloning of Leishmania. In Genes andAntigens of Parasites: a Laboratory Manual, (ed. Møser, C. M.) p. 47 Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.Google Scholar
Jepsen, S. (1983). Inhibition of in vitro growth of Plasmodium falciparum by purified antimalarial human IgG antibodies. Isolation of target antigens from culture supernatants. Scandinavian Journal of Immunology 18, 567–71.CrossRefGoogle ScholarPubMed
Joiner, K., Rimoldi, M. T., Kipnis, T., Da Silva, W. D., Hammer, C. H. & Sher, A. (1987). Trypomastigotes ofTrypanosoma cruzi produce molecules which accelerate the decay of complement C3 convertases. Complement 4, 175 (Abstract).Google Scholar
Kasper, L. H., Crabb, J. H. & Pfefferkorn, E. F. (1983). Purification of major membrane protein ofToxoplasma gondii by immunoadsorption with monoclonal antibody. Journal of Immunology 130, 2407–12.CrossRefGoogle Scholar
Krettli, A. U. & Brener, Z. (1976). Protective effects of specific antibodies inTrypanosoma cruzi infections. Journal of Immunology 116, 755–60.CrossRefGoogle ScholarPubMed
Mchardy, N. (1977). Passive immunization of mice againstTrypanosoma cruzi using convalescent mouse serum. Tropenmedizin und Parasitologie 28, 195201.Google Scholar
Mendel-Hartig, I. (1982). A simple and rapid method for the isolation of peptides from sodium dodecyl sulfate-containing polyacrylamide gels. Annals of Biochemistry 121, 215–17.Google Scholar
Nussenzweig, V., Deane, L. M. & Kloetzel, H. (1963). Differences in antigenic constitution of strains ofTrypanosoma cruzi. Experimental Parasitology 14, 221–4.CrossRefGoogle Scholar
Orozco, O., Afchain, D., Dissous, C., Rodriguez, C., Ovlaque, G., Lemesre, J. L., Loyens, M. & Capron, A. (1984). Different monoclonal antibodies against the component 5 specific for Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene 33, 560–8.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Afchain, D., Capron, A. & Grimaud, J. A. (1984). Fibronectin receptors on Trypanosoma cruzi and their biological function. Nature, London 308, 380–2.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Cornette, J. & Capron, A. (1986). Identification and isolation of Trypanosoma cruzi trypomastigote cell surface protein with properties expected of a fibronectin receptor. Molecular and Biochemical Parasitology 19, 201–11.CrossRefGoogle ScholarPubMed
Pelham, H. R. B. & Jackson, R. J. (1976). An efficient mRNA dependent translation system from reticulocyte lysates. European Journal of Biochemistry 67, 247–56.CrossRefGoogle ScholarPubMed
Plata, F., Garcia-Pons, F. & Eisen, H. (1984). Antigenic polymorphism of Trypanosoma cruzi: clonal analysis of trypomastigote surface antigens. European Journal of Immunology 14, 392–9.CrossRefGoogle ScholarPubMed
Rivera-Vanderpas, M. T., Rodriguez, A. M., Afchain, D., Baxin, H. & Capron, A. (1983). Trypanosoma cruzi: variation in susceptibility of inbred strains of rats. Acta Tropica 40, 510.Google ScholarPubMed
Rodriguez, N., Hernandez, A. G. & Merino, F. (1983). Effect of purified excreted factor from Leishmania brasiliensis on macrophage activity. International Archives of Allergy and Applied Immunology 72, 206–10.CrossRefGoogle ScholarPubMed
Sadigursky, M., Von Kreuter, B. F. & Santos-Buch, C. A. (1988). Development of chagasic autoimmune myocarditis associated with anti-idiotype reaction. Memorias Instituto Oswaldo Cruz 83, 363–6.CrossRefGoogle ScholarPubMed
Santiago, A. R., Afchain, D. & Capron, A. (1981). Specific antigens of Trypanosoma cruzi amastigotes and trypomastigotes. Annales Société Belge de Médecine Tropicale 61, 369–78.Google ScholarPubMed
Scharfstein, J., Rodrigues, M. M., Alves, C. A., Souza, W., Previato, J. O. & Mendonca-Previato, L. (1983). Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. Journal of Immunology 131, 972–6.CrossRefGoogle ScholarPubMed
Schecher, M., Voller, A., Marinkelle, C. J., Fling, J. E., Guhl, F. & Miles, M. A. (1983). Purified Trypanosoma cruzi-specific glycoprotein for discriminative serological diagnosis of South American trypanosomiasis (Chagas' disease). Lancet 2, 939–41.CrossRefGoogle Scholar
Segura, E. L., Bua, J., Rosenstein De Campanini, A., Subias, E., Esteva, M., Moreno, M. & Ruiz, A. M. (1986). Monoclonal antibodies against the flagellar fraction of epimastigotes of Trypanosoma cruzi: complement-mediated lysis activity against trypomastigotes and passive immunoprotection in mice. Immunology Letters 13, 165–71.CrossRefGoogle ScholarPubMed
Smith, R. D., James, M. A., Ristic, M., Aikawa, M. & Vegaymurguia, C. A. (1981). Bovine babesiosis: Protection of cattle with culture derived soluble Babesia bovis antigen. Science 212, 335–8.Google Scholar
Trischmann, T. M. & Bloom, B. R. (1980). Trypanosoma cruzi: ability of T cell-enriched and depleted lymphocyte populations to passively protect mice. Experimental Parasitology 49, 225–32.CrossRefGoogle ScholarPubMed
Velge, P., Ouaissi, M. A., Cornette, J., Afchain, D. & Capron, A. (1988). Identification and isolation of Trypanosoma cruzi trypomastigote collagen-binding protein: possible role in cell-parasite interaction. Parasitology 97, 114.Google ScholarPubMed