Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T05:26:54.909Z Has data issue: false hasContentIssue false

Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis

Published online by Cambridge University Press:  08 December 2016

ERICK AMADOR
Affiliation:
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
KARLA LÓPEZ-PACHECO
Affiliation:
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
NATALY MORALES
Affiliation:
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
ROBERTO CORIA
Affiliation:
Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
IMELDA LÓPEZ-VILLASEÑOR*
Affiliation:
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
*
*Corresponding author: Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México. E-mail: [email protected]

Summary

Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

† Both authors contributed equally to this work.

References

REFERENCES

Ali, N. O., Ibrahim, M. E., Grant, K. M. and Mottram, J. C. (2010). Molecular cloning, characterization and overexpression of a novel cyclin from Leishmania mexicana . Pakistan Journal of Biological Sciences 13, 775784.Google Scholar
Alvarez-Sánchez, M. E., Avila-González, L., Becerril-García, C., Fattel-Facenda, L. V., Ortega-López, J. and Arroyo, R. (2000). A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microbial Pathogenesis 28, 193202.Google Scholar
Béranger, F., Aresta, S., De Gunzburg, J. and Camonis, J. (1997). Getting more from the two-hybrid system: N-terminal fusions to LexA are efficient and sensitive baits for two-hybrid studies. Nucleic Acids Research 25, 20352036.CrossRefGoogle ScholarPubMed
Bourne, Y., Watson, M. H., Hickey, M. J., Holmes, W., Rocque, W., Reed, S. I. and Tainer, J. A. (1996). Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84, 863874.Google Scholar
Brizuela, L., Draetta, G. and Beach, D. (1987). P13suc1 acts in the fission yeast cell division cycle as a component of the P34cdc2 protein kinase. EMBO Journal 6, 35073514.Google Scholar
Brown, N. R., Noble, M. E., Lawrie, A. M., Morris, M. C., Tunnah, P., Divita, G., Johnson, L. N. and Endicott, J. A. (1999). Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. Journal of Biological Chemistry 274, 87468756.Google Scholar
Dacks, J. B., Walker, G. and Field, M. C. (2008). Implications of the new eukaryotic systematics for parasitologists. Parasitology International 57, 97104.Google Scholar
Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43, 488490.Google Scholar
Dunphy, W. G., Brizuela, L., Beach, D. and Newport, J. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423431.Google Scholar
Echalier, A., Endicott, J. A. and Noble, M. E. (2010). Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochimica et Biophysica Acta 1804, 511519.Google Scholar
Enders, G. H. (2012). Mammalian interphase Cdks: dispensable master regulators of the cell cycle. Genes and Cancer 3, 614618.CrossRefGoogle ScholarPubMed
Frontini, M., Kukalev, A., Leo, E., Ng, Y. M., Cervantes, M., Cheng, C.-W., Holic, R., Dormann, D., Tse, E., Pommier, Y. and Yu, V. (2012). The CDK subunit CKS2 counteracts CKS1 to control cyclin A/CDK2 activity in maintaining replicative fidelity and neurodevelopment. Developmental Cell 23, 356370.Google Scholar
Fuentes, V., Barrera, G., Sánchez, J., Hernández, R. and López-Villaseñor, I. (2012). Functional analysis of sequence motifs involved in the polyadenylation of Trichomonas vaginalis mRNAs. Eukaryotic Cell 11, 725734.Google Scholar
Gómez, E. B., Kornblihtt, A. R. and Téllez-Iñón, M. T. (1998). Cloning of a cdc2-related protein kinase from Trypanosoma cruzi that interacts with mammalian cyclins. Molecular and Biochemical Parasitology 91, 337351.Google Scholar
Gómez, E. B., Santorini, M. I., Laria, S., Engel, J. C., Swindle, J., Eisen, H., Szankasi, P. and Téllez-Iñón, M. T. (2001). Characterization of the Trypanosoma cruzi Cdc2p-related protein kinase 1 and identification of three novel associating cyclins. Molecular and Biochemical Parasitology 113, 97108.Google Scholar
Grant, K. M., Hassan, P., Anderson, J. S. and Mottram, J. C. (1998). The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12Cks1 . Journal of Biological Chemistry 273, 1015310159.Google Scholar
Hadwiger, J. A., Wittenberg, C., Mendenhall, M. D. and Reed, S. I. (1989). The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Molecular and Cellular Biology 9, 20342041.Google Scholar
Hammarton, T. C., Clark, J., Douglas, F., Boshart, M. and Mottram, J. C. (2003). Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. Journal of Biological Chemistry 278, 2287722886.Google Scholar
Horton, L. E. and Templeton, D. J. (1997). The cyclin box and C-terminus of cyclins A and E specify CDK activation and substrate specificity. Oncogene 14, 491498.Google Scholar
Huang, D., Patrick, G., Moffat, J., Tsai, L.-H. and Andrews, B. (1999). Mammalian Cdk5 is a functional homologue of the budding yeast Pho85 cyclin-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America 96, 1444514450.Google Scholar
Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H. and Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols 7, 15111522.Google Scholar
Kawauchi, T., Shikanai, M. and Kosodo, Y. (2013). Extra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes to Cells 18, 176194.Google Scholar
Malumbres, M. (2014). Cyclin-dependent kinases. Genome Biology 15, 122.Google Scholar
Malumbres, M. and Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in Biochemical Sciences 30, 630641.Google Scholar
McGrath, D. A., Balog, E. R. M., Kõivomägi, M., Lucena, R., Mai, L. V., Hirschi, A., Kellogg, D. R., Loog, M. and Rubin, S. M. (2013). Cks confers specificity to phosphorylation-dependent Cdk signalling pathways. Nature Structural Molecular Biology 20, 14071414.Google Scholar
Morgan, D. O. (1995). Principles of CDK regulation. Nature 374, 131134.Google Scholar
Mottram, J. C. and Grant, K. M. (1996). Leishmania mexicana p12cks1, a homologue of fission yeast p13suc1, associates with a stage-regulated histone H1 kinase. Biochemical Journal 316, 833839.Google Scholar
Mottram, J. C. and Smith, G. (1995). A family of trypanosome cdc2-related protein kinases. Gene 162, 147152.Google Scholar
Mottram, J. C., Kinnaird, J. H., Shiels, B. R., Tait, A. and Barry, J. D. (1993). A novel CDC2-related protein kinase from Leishmania mexicana, LmmCRK1, is post-translationally regulated during the life cycle. Journal of Biological Chemistry 268, 2104421052.Google Scholar
Muñoz, M. J., Santori, M. I., Rojas, F., Gómez, E. B. and Téllez-Iñón, M. T. (2006). Trypanosoma cruzi Tcp12CKS1 interacts with parasite CRKs and rescues the p13SUC1 fission yeast mutant. Molecular and Biochemical Parasitology 147, 154162.Google Scholar
Nishizawa, M., Suzuki, K., Fujino, M., Oguchi, T. and Toh-e, A. (1999). The Pho85 kinase, a member of the yeast cyclin-dependent kinase (Cdk) family, has a regulation mechanism different from Cdks functioning throughout the cell cycle. Genes to Cells 4, 627642.CrossRefGoogle Scholar
Nurse, P. and Bissett, Y. (1981). Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292, 558560.Google Scholar
Ongay-Larios, L., Saviñon-Tejeda, A. L., Williamson, M. J. Jr, Durán-Avelar, M. and Coria, R. (2000). The Leu-132 of the Ste4(Gbeta) subunit is essential for proper coupling of the G protein with the Ste2 alpha factor receptor during the mating pheromone response in yeast. FEBS Letters 467, 2226.Google Scholar
Piscopo, D. M. and Hinds, P. W. (2008). A role for the cyclin box in the ubiquitin-mediated degradation of cyclin G1. Cancer Research 68, 55815590.Google Scholar
Reed, S. I. and Wittenberg, C. (1990). Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae . Proceedings of the National Academy of Sciences of the United States of America 87, 56975701.Google Scholar
Richardson, H. E., Stueland, C. S., Thomas, J., Russell, P. and Reed, S. I. (1990). Human cDNAs encoding homologs of the small p34cdc28/cdc2-associated protein of Saccharomyces cerevisiae and Schizosaccharomyces pombe . Genes and Development 4, 13321344.Google Scholar
Riley, D. E., Campbell, L. A., Puolakkainen, M. and Krieger, J. N. (1993). Trichomonas vaginalis and early evolving DNA and protein sequences of the CDC2/28 protein kinase family. Molecular Microbiology 8, 517519.Google Scholar
Ross-MacDonald, P. B., Graeser, R., Kappes, B., Franklin, R. and Williamson, D. H. (1994). Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum . European Journal of Biochemistry 220, 693701.Google Scholar
Rousseau, F., Schymkowitz, J. W., Wilkinson, H. R. and Itzhaki, L. S. (2001). Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues. Proceedings of the National Academy of Sciences of the United States of America 98, 55965601.Google Scholar
Santamaría, D., Barrière, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., Cáceres, J. F., Dubus, P., Malumbres, M. and Barbacid, M. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811815.Google Scholar
Seeliger, M. A., Spichty, M., Kelly, S. E., Bycroft, M., Freund, S. M., Karplus, M. and Itzhaki, L. S. (2005). Role of conformational heterogeneity in domain swapping and adapter function of the Cks proteins. Journal of Biological Chemistry 280, 3044830459.Google Scholar
Sogin, M. L. (1991). Early evolution and the origin of eukaryotes. Current Opinion in Genetics and Development 1, 457463.Google Scholar
Sperança, M. A., Vinkenoog, R., Ocampos, M., Fischer, K., Janse, C. J., Waters, A. P. and del Portillo, H. A. (2001). Primary structure of the Plasmodium vivax crk2 Gene and interference of the yeast cell cycle upon its conditional expression. Experimental Parasitology 97, 119128.Google Scholar
Spruck, C., Strohmaier, H., Watson, M., Smith, A. P., Ryan, A., Krek, T. W. and Reed, S. I. (2001). A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Molecular Cell 7, 639650.Google Scholar
Spruck, C. H., de Miguel, M. P., Smith, A. P. L., Ryan, A., Stein, P., Schultz, R. M., Lincoln, A. J., Donovan, P. J. and Reed, S. I. (2003). Requirement of Cks2 for the first metaphase/anaphase transition of mammalian meiosis. Science 300, 647650.Google Scholar
Swinnen, E., Wanke, V., Roosen, J., Smets, B., Dubouloz, F., Pedruzzi, I., Cameroni, E., De Virgilio, C. and Winderickx, J. (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae . Cell Division 1, 3.Google Scholar
Tang, L., Pelech, S. L. and Berger, J. D. (1994). A cdc2-like kinase associated with commitment to division in Paramecium tetraurelia . Journal of Eukaryotic Microbiology 41, 381387.Google Scholar
Toh-e, A., Tanaka, K., Uesono, Y. and Wickner, R. B. (1988). PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae . MGG Molecular & General Genetics 214, 162164.Google Scholar
Vinkenoog, R., Sperança, A., Ramesar, J., Thomas, A. W., Portillo, H. A., Janse, C. J. and Waters, A. P. (1998). Characterisation of the Cdc2-related kinase 2 gene from Plasmodium knowlesi and P. berghei. Molecular and Biochemical Parasitology 95, 229240.Google Scholar
Wang, Y., Dimitrov, K., Garrity, L. K., Sazer, S. and Beverley, S. M. (1998). Stage-specific activity of the Leishmania major CRK3 kinase and functional rescue of a Schizosaccharomyces pombe cdc2 mutant. Molecular and Biochemical Parasitology 96, 139150.Google Scholar
World Health Organization (2011). Prevalence and incidence of selected sexually transmitted infections: Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas vaginalis: methods and results used by WHO to generate 2005 estimates. World Health Organization, Geneva, Switzerland.Google Scholar