Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T04:55:23.980Z Has data issue: false hasContentIssue false

Anthelmintic activity of Stevia multiaristata extract against Echinococcus granulosus sensu stricto

Published online by Cambridge University Press:  13 December 2021

C. M. Albani*
Affiliation:
Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
J. Borgo
Affiliation:
CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
J. Fabbri
Affiliation:
Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
P. Pensel
Affiliation:
Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
L. Fasciani
Affiliation:
Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
O. Elso
Affiliation:
CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
D. Papademetrio
Affiliation:
CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
D. Grasso
Affiliation:
CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiopatología, Universidad de Buenos Aires, Buenos Aires, Argentina
A. Paladini
Affiliation:
Facultad de Ciencias Veterinarias (UNLP), Cátedra de Parasitología Comparada, Buenos Aires, Argentina
M. F. Beer
Affiliation:
CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
N. E. Farias
Affiliation:
Laboratorio de Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMYC) (UNMDP-CONICET), Mar del Plata, Argentina
N. Elissondo*
Affiliation:
Laboratorio de Análisis Clínicos, Santisteban, 7000 Tandil, Buenos Aires, Argentina
G. Gambino
Affiliation:
Laboratorio de Análisis Clínicos, Santisteban, 7000 Tandil, Buenos Aires, Argentina
J. Zoppi
Affiliation:
Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, Argentina
V. Sülsen
Affiliation:
CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
M. C. Elissondo
Affiliation:
Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
*
Authors for correspondence: C. M. Albani, E-mail: [email protected]; M. C. Elissondo, E-mail: [email protected]
Authors for correspondence: C. M. Albani, E-mail: [email protected]; M. C. Elissondo, E-mail: [email protected]

Abstract

Cystic echinococcosis is a zoonotic disease caused by the larval stage of the parasite Echinococcus granulosus sensu lato. The available anti-parasitic treatment is mostly limited to a continuous administration of albendazole. However, due to its numerous side-effects and efficacy of around 50%, there is a need to find new drugs to improve the treatment for this disease. In the current study, the in vitro and in vivo efficacy of a Stevia multiaristata extract against E. granulosus sensu stricto (s.s.) was demonstrated. Stevia multiaristata extract (100 and 50 μg mL−1) caused a quick viability decrease on protoscoleces which was consistent with the observed tegumental alterations. Loss of turgidity was detected in 95 ± 3.4% of cysts incubated with S. multiaristata extract during 2 days (100 μg mL−1) and the collapse of the germinal layer was observed in 60 ± 9.3% of cysts treated with 100 μg mL−1 of the S. multiaristata extract during 4 days. The half maximal effective concentration value was 69.6 μg mL−1 and the selectivity index for E. granulosus s.s. cysts was 1.9. In this clinical efficacy study, the treatment of infected mice with the S. multiaristata extract (50 mg kg−1) caused a significant decrease in the weight of the cysts compared with the control group. These results coincided with the tissue damage observed in the cysts at the ultrastructural level. In conclusion, we observed high protoscolicidal and cysticidal effects, and significant reduction in the weight of the cysts in experimentally infected mice following treatment with the S. multiaristata extract.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Abodi, HR, Al-Shadeedi, SMJ, Al-Alo, KZK and Ghasemian, A (2019) Zataria multiflora bois as an auspicious therapeutic approach against Echinococcus granulosus: current status and future perspectives. Comparative Immunology, Microbiology and Infectious Diseases 66, 101335.CrossRefGoogle Scholar
Ali, R, Khan, S, Khan, M, Adnan, M, Ali, I, Khan, TA, Haleem, S, Rooman, M, Norin, S and Khan, SN (2020) A systematic review of medicinal plants used against Echinococcus granulosus. PLoS One 15, e0240456.CrossRefGoogle ScholarPubMed
Alves, KS (2020) ec50estimator: an automated way to estimate EC50 for stratified datasets. R package version 0.1.0. Available at https://CRAN.R-project.org/package=ec50estimator (Accessed 13 August 2021).Google Scholar
Beer, MF, Frank, FM, Elso, OG, Bivona, AE, Cerny, N, Giberti, G, Malchiodi, EL, Martino, VS, Alonso, MR, Sülsen, VP and Cazorla, SI (2016) Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharmaceutical Biology 54, 21882195.CrossRefGoogle ScholarPubMed
Bergmeyer, HU, Bowers, GN Jr., Horder, M and Moss, DW (1976) Provisional recommendations on IFCC methods for the measurement of catalytic concentrations of enzymes. Part 2. IFCC method for aspartate aminotransferase. Clinica Chimica Acta 70, F19F29.CrossRefGoogle ScholarPubMed
Bessey, OA, Lowry, OH and Brock, MJ (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. The Journal of Biological Chemistry 164, 321329.CrossRefGoogle ScholarPubMed
Boniface, PK and Ferreira, EI (2019) Flavonoids as efficient scaffolds: recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytotherapy Research 33, 24732517.CrossRefGoogle ScholarPubMed
Borgo, J, Laurella, LC, Martini, F, Catalán, CAN and Sülsen, VP (2021) Stevia genus: phytochemistry and biological activities update. Molecules 26, 2733.CrossRefGoogle ScholarPubMed
Brunetti, E, Kern, P and Vuitton, DA (2010) Writing panel for the WHO-IWGE, expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Tropica 114, 116.CrossRefGoogle ScholarPubMed
Byoung, M (2012) Anti-inflammatory activity of austroinulin from Stevia rebaudiana in LPS-induced RAW264.7 cells. Journal of the Korean Society of Food Science and Nutrition 41, 456461.Google Scholar
Cavaliere, V, Papademetrio, DL, Lombardo, T, Costantino, SN, Blanco, GA and Álvarez, EMC (2014) Caffeic acid phenylethyl ester and MG132, two novel nonconventional chemotherapeutic agents, induce apoptosis of human leukemic cells by disrupting mitochondrial function. Targeted Oncology 9, 2542.CrossRefGoogle ScholarPubMed
Cheraghipour, K, Beiranvand, M, Zivdari, M, Amiri, S, Masoori, L, Nourmohammadi, M, Maken Ali, AS, Abbaszadeh, S, Moradpour, K and Marzban, A (2021) In vitro potential effect of Pipper longum methanolic extract against protoscolices of hydatid cysts. Experimental Parasitology 221, 108051.CrossRefGoogle ScholarPubMed
Cos, P, Vlietinck, AJ, Berghe, DV and Maes, L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. Journal of Ethnopharmacology 106, 290302.CrossRefGoogle Scholar
Cucher, M, Prada, L, Mourglia-Ettlin, G, Dematteis, S, Camicia, F, Asurmendi, S and Rosenzvit, M (2011) Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. International Journal of Parasitology 41, 439448.CrossRefGoogle ScholarPubMed
Duke, JA and Bogenschutz-Godwin, MJ (1999) The synergy principle at work in plants, pathogens, insects, herbivores and humans. In Kaufmann, PB, Cseke, LJ, Warbler, S, Duke, JA and Brielmann, HL (eds), Natural Products from Plants. Boca Raton: CRC Press, pp. 183205Google Scholar
Elissondo, M, Dopchiz, M, Ceballos, L, Alvarez, L, Sánchez Bruni, S, Lanusse, C and Denegri, G (2006) In vitro effects of flubendazole on Echinococcus granulosus protoscoleces. Parasitology Research 98, 317323.CrossRefGoogle ScholarPubMed
Elissondo, M, Ceballos, L, Dopchiz, M, Andresiuk, V, Alvarez, L, Bruni, SS, Lanusse, C and Denegri, G (2007) In vitro and in vivo effects of flubendazole on Echinococcus granulosus metacestodes. Parasitology Research 100, 10031009.CrossRefGoogle ScholarPubMed
Elissondo, MC, Ceballos, L, Alvarez, L, Sánchez Bruni, S, Lanusse, C and Denegri, G (2009) Flubendazole and ivermectin in vitro combination therapy produces a marked effect on Echinococcus granulosus protoscoleces and metacestodes. Parasitology Research 105, 835842.CrossRefGoogle ScholarPubMed
Elissondo, MC, Pensel, PE and Denegri, GM (2012) Could thymol have effectiveness on scolices and germinal layer of hydatid cysts? Acta Tropica 125, 251257.CrossRefGoogle ScholarPubMed
Elso, OG, Bivona, AE, Sanchez Alberti, A, Cerny, N, Fabian, L, Morales, C, Catalán, CAN, Malchiodi, EL, Cazorla, SI and Sülsen, VP (2020) Trypanocidal activity of four sesquiterpene lactones isolated from Asteraceae species. Molecules 25, 2014.CrossRefGoogle ScholarPubMed
Fabbri, J, Maggiore, MA, Pensel, PE, Denegri, GM, Gende, LB and Elissondo, MC (2016) In vitro and in vivo efficacy of carvacrol against Echinococcus granulosus. Acta Tropica 164, 272279.CrossRefGoogle ScholarPubMed
Fox, J and Weisberg, S (2019) An {R} Companion to Applied Regression, 3rd Edn. Thousand Oaks, CA: Sage. Available at https://socialsciences.mcmaster.ca/jfox/Books/Companion/.Google Scholar
Gilbert, B and Alves, LF (2003) Synergy in plant medicines. Current Medicine Chemistry 10, 1320.CrossRefGoogle ScholarPubMed
Haji Mohammadi, KH, Heidarpour, M and Borji, H (2018) In vivo therapeutic efficacy of the Allium sativum ME in experimentally Echinococcus granulosus infected mice. Comparative Immunology, Microbiology and Infectious Diseases 60, 2327.CrossRefGoogle ScholarPubMed
Haji Mohammadi, KH, Heidarpour, M and Borji, H (2019) Allium sativum methanolic extract (garlic) improves therapeutic efficacy of albendazole against hydatid cyst: in vivo study. Journal of Investigative Surgery 32, 723730.CrossRefGoogle ScholarPubMed
Kujur, RS, Singh, V, Ram, M, Yadava, HN, Singh, KK, Kumari, S and Roy, BK (2010) Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacognosy Research 2, 258263.Google ScholarPubMed
Labsi, M, Khelifi, L, Mezioug, D, Soufli, I and Touil-Boukoffa, C (2016) Antihydatic and immunomodulatory effects of Punica granatum peel aqueous extract in a murine model of echinococcosis. Asian Pacific Journal of Tropical Medicine 9, 211220.CrossRefGoogle Scholar
Labsi, M, Soufli, I, Khelifi, L, Amir, ZC and Touil-Boukoffa, C (2019) A preventive effect of the combination of albendazole and pomegranate peel aqueous extract treatment in cystic echinococcosis mice model: an alternative approach. Acta Tropica 197, 105050.CrossRefGoogle Scholar
Lenth, RV (2021). Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.1. Available at https://CRAN.R-project.org/package=emmeans (Accessed 13 August 2021).Google Scholar
Luo, Y, Zhang, G, Liu, X, Yuan, M, Gao, Q, Gao, H, Ke, L, Zhang, X, Shi, Y, Ma, X, Zhang, L and Dong, K (2018) Therapeutic and immunoregulatory effects of water-soluble alkaloids E2-a from Sophora moorcroftiana seeds as a novel potential agent against echinococcosis in experimentally protoscolex-infected mice. Veterinary Research 49, 100.CrossRefGoogle ScholarPubMed
Lv, H, Jiang, Y, Liao, M, Sun, H, Zhang, S and Peng, X (2013) In vitro and in vivo treatments of Echinococcus granulosus with Huaier aqueous extract and albendazole liposome. Parasitology Research 112, 193198.CrossRefGoogle ScholarPubMed
Mead, J and McNair, N (2006) Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiology Letters 259, 153157.CrossRefGoogle ScholarPubMed
Moazeni, M, Larki, S, Saharkhiz, MJ, Oryan, A, Ansary Lari, M and Mootabi Alavi, A (2014) In vivo study of the efficacy of the aromatic water of Zataria multiflora on hydatid cysts. Antimicrobial Agents Chemotherapy 58, 60036008.CrossRefGoogle ScholarPubMed
Moro, P and Schantz, PM (2009) Echinococcosis: a review. International Journal of Infectious Diseases 13, 125133.CrossRefGoogle ScholarPubMed
Moujir, L, Callies, O, Sousa, PMC, Sharopov, F and Seca, AML (2020) Applications of sesquiterpene lactones: a review of some potential success cases. Applied Sciences 10, 3001.CrossRefGoogle Scholar
National Research Council US, (2011) Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press.Google Scholar
Pavletic, CF, Larrieu, E, Guarnera, EA, Casas, N, Irabedra, P, Ferreira, C, Sayes, J, Gavidia, CM, Caldas, E, Lise, MLZ, Maxwell, M, Arezo, M, Navarro, AM, Vigilato, MAN, Cosivi, O, Espinal, M and Vilas, VJDR (2017) Cystic echinococcosis in South America: a call for action. Revista Panamericana de Salud Pública 21, 41e42.Google Scholar
Pawlowski, ZS, Eckert, J, Vuitton, DA, Ammann, RW, Kern, P, Crai, PS, Dar, KF, De Rosa, F, Filice, C, Gottstein, B, Grimm, F, Macpherson, CNL, Sato, N, Todorov, T, Uchino, J, von Sinner, W and Wen, H (2001) Echinococcosis in humans: clinical aspects, diagnosis and treatment. In Eckert, J, Gemmell, MA, Meslin, FX and Pawlowski, ZS (eds), WHO/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. Paris, France: World Organisation for Animal Health, pp. 2072.Google Scholar
Pensel, PE, Maggiore, MA, Gende, LB, Eguaras, MJ, Denegri, MG and Elissondo, MC (2014) Efficacy of essential oils of Thymus vulgaris and Origanum vulgare on Echinococcus granulosus. Interdisciplinary Perspectives of Infectious Diseases 2014, 693289.CrossRefGoogle ScholarPubMed
Rasoanaivo, P, Wright, CW, Willcox, ML and Gilbert, B (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria Journal 10, S4. doi: 10.1186/1475-2875-10-S1-S4.CrossRefGoogle ScholarPubMed
Rasul, A, Khan, M, Ali, M, Li, J and Li, X (2013) Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. Scientific World Journal 27, 248532.Google Scholar
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org/.Google Scholar
Ruiz-Ruiz, JC, Moguel-Ordoñez, YB and Segura-Campos, MR (2017) Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Critical Reviews in Food Science and Nutrition 57, 26802690. doi: 10.1080/10408398.2015.1072083CrossRefGoogle ScholarPubMed
Sanchez Alberti, A, Cerny, N, Bivona, A and Cazorla, S (2018) Antitrypanosomal and antileishmanial activities. In Sülsen, V and Martino, V (eds), Sesquiterpene Lactones. Advances in Their Chemistry and Biological Aspects. Cham, Switzerland: Springer, pp. 175192.CrossRefGoogle Scholar
Sessa, DP, Mengarda, AC, Simplicio, PE, Antar, GM, Lago, JHG and de Moraes, J (2020) 15β-Senecioyl-oxy-ent-kaur-16-en-19-oic Acid, a diterpene isolated from Baccharis lateralis, as promising oral compound for the treatment of schistosomiasis. Journal of Natural Products 83, 37443750.CrossRefGoogle ScholarPubMed
Shaw, LM, Stromme, JH, London, JL and Theodosen, L (1983) IFCC methods for the measurement of catalytic concentration of enzymes. Part 4. IFCC method for gamma-glutamyltransferase [(gamma-glutamyl)-peptide: amino acid gamma-glutamyltransferase, EC 2.3.2.2]. Journal of Clinical Chemistry and Clinical Biochemistry 21, 633646.Google Scholar
Siles-Lucas, M, Casulli, A, Cirilli, R and Carmena, D (2018) Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: compounds and therapeutic targets. PLoS Neglected Tropical Diseases 12, e0006422.CrossRefGoogle ScholarPubMed
Sülsen, VP (2021) Sesquiterpene lactones and diterpenes: promising therapeutic candidates for infectious diseases, neoplasms and other chronic disorders. Molecules 26, 1251.CrossRefGoogle ScholarPubMed
Sülsen, VP, Lizarraga, EF, Elso, OG, Cerny, N, Sanchez Alberti, A, Bivona, AE, Malchiodi, EL, Cazorla, SI and Catalán, CAN (2019) Activity of estafietin and analogues on Trypanosoma cruzi and Leishmania braziliensis. Molecules 24, 1209.CrossRefGoogle ScholarPubMed
Szasz, G (1969) A kinetic photometric method for sérum γ-glutamyl transpeptidase. Clinical Chemistry 15, 124136.CrossRefGoogle ScholarPubMed
Tabatabaei, ZS, Dehshahri, S, Taghi, MM, Esfandiari, F, Sadjjadi, FS, Ebrahimipour, M and Sadjjadi, SM (2019) In vitro study on protoscolicidal effect of methanolic extract of Allium hirtifolium on protoscoleces of cystic echinococcosis. Infectious Disorders – Drug Targets 19, 264268.CrossRefGoogle Scholar
Tagboto, S and Townson, S (2001) Antiparasitic properties of medical plants and other naturally occurring products. Advances in Parasitology 50, 199295.CrossRefGoogle ScholarPubMed
Tandon, V, Yadav, AK, Roy, B and Das, B (2011) Phytochemicals as cure of worm infections in traditional medicine systems. In Srivastava, UC and Kumar, S (eds), Emerging Trends in Zoology. New Delhi: Narendra Publishing House, pp. 351378.Google Scholar
Wen, H, Vuitton, L, Tuxun, T, Li, J, Vuitton, DA, Zhang, W and McManus, DP (2019) Echinococcosis: advances in the 21st century. Clinical Microbiology Reviews 32, e00075-18.CrossRefGoogle ScholarPubMed
WHO (2013) WHO Traditional Medicine Strategy 2014–2023. Available at http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (Accessed 25 September 2021).Google Scholar
Zuloaga, F, Morrone, O and Belgrano, M (2008) Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Vol. 2 Dicotyledoneae: Acanthaceae-Fabaceae (Abarema-Schizolobium). St. Louis, MO: Missouri Botanical Garden Press.Google Scholar
Supplementary material: Image

Albani et al. supplementary material

Figure S1

Download Albani et al. supplementary material(Image)
Image 1.6 MB