Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T10:37:30.420Z Has data issue: false hasContentIssue false

Animal models of efficacy to accelerate drug discovery in malaria

Published online by Cambridge University Press:  21 June 2013

MARÍA BELÉN JIMÉNEZ-DÍAZ
Affiliation:
GlaxoSmithKline, Diseases of the Developing World-Tres Cantos Medicines Development Campus, Tres Cantos 28760, Madrid, Spain
SARA VIERA
Affiliation:
GlaxoSmithKline, Diseases of the Developing World-Tres Cantos Medicines Development Campus, Tres Cantos 28760, Madrid, Spain
ELENA FERNÁNDEZ-ALVARO
Affiliation:
GlaxoSmithKline, Diseases of the Developing World-Tres Cantos Medicines Development Campus, Tres Cantos 28760, Madrid, Spain
IÑIGO ANGULO-BARTUREN*
Affiliation:
GlaxoSmithKline, Diseases of the Developing World-Tres Cantos Medicines Development Campus, Tres Cantos 28760, Madrid, Spain
*
*Corresponding author: GlaxoSmithKline, Diseases of The Developing World, Tres Cantos Medicines Development Campus, Severo Ochoa, 2. Tres Cantos 28760, Madrid, Spain. Tel: +34 650 685 404. Fax: +34 91 807 05 95. E-mail: [email protected]

Summary

The emergence of resistance to artemisinins and the renewed efforts to eradicate malaria demand the urgent development of new drugs. In this endeavour, the evaluation of efficacy in animal models is often a go/no go decision assay in drug discovery. This important role relies on the capability of animal models to assess the disposition, toxicology and efficacy of drugs in a single test. Although the relative merits of each efficacy model of malaria as human surrogate have been extensively discussed, there are no critical analyses on the use of such models in current drug discovery. In this article, we intend to analyse how efficacy models are used to discover new antimalarial drugs. Our analysis indicates that testing drug efficacy is often the last assay in each discovery stage and the experimental designs utilized are not optimized to expedite decision-making and inform clinical development. In light of this analysis, we propose new ways to accelerate drug discovery using efficacy models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, S. L., Ager, A., McGreevy, P., Schuster, B. G., Wesche, D., Kuschner, R., Ohrt, C., Ellis, W., Rossan, R. and Berman, J. (1995). Activity of azithromycin as a blood schizonticide against rodent and human plasmodia in vivo. American Journal of Tropical Medicine and Hygiene 52, 159161.Google Scholar
Anderson, J. W., Sarantakis, D., Terpinski, J., Kumar, T. R., Tsai, H. C., Kuo, M., Ager, A. L., Jacobs, W. R. Jr., Schiehser, G. A., Ekins, S., Sacchettini, J. C., Jacobus, D. P., Fidock, D. A. and Freundlich, J. S. (2013). Novel diaryl ureas with efficacy in a mouse model of malaria. Bioorganic and Medicinal Chemistry Letters 23, 10221025. doi:10.1016/j.bmcl.2012.12.022.Google Scholar
Angulo-Barturen, I. and Ferrer, S. (2012). Humanised models of infection in the evaluation of anti-malarial drugs. Drug Discovery Today: Technologies. doi:10.1016/j.ddtec.2012.07.003.Google Scholar
Angulo-Barturen, I., Jiménez-Díaz, M. B., Mulet, T., Rullas, J., Herreros, E., Ferrer, S., Jiménez, E., Mendoza, A., Regadera, J., Rosenthal, P. J., Bathurst, I., Pompliano, D. L., Gómez de las Heras, F. and Gargallo-Viola, D. (2008). A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS ONE 3, e2252. doi:10.1371/journal.pone.0002252.Google Scholar
Apte, S. H., Groves, P. L., Roddick, J. S., V, P. d. H. and Doolan, D. L. (2011). High-throughput multi-parameter flow-cytometric analysis from micro-quantities of plasmodium-infected blood. International Journal for Parasitology 41, 12851294. doi: 10.1016/j.ijpara.2011.07.010.CrossRefGoogle ScholarPubMed
Arnold, L., Tyagi, R. K., Meija, P., Swetman, C., Gleeson, J., Perignon, J. L. and Druilhe, P. (2011). Further improvements of the P. falciparum humanized mouse model. PLoS ONE, 6. doi:10.1371/journal.pone.0018045.CrossRefGoogle Scholar
Azuma, H., Paulk, N., Ranade, A., Dorrell, C., Al-Dhalimy, M., Ellis, E., Strom, S., Kay, M. A., Finegold, M. and Grompe, M. (2007). Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nature Biotechnology 25, 903910. doi: 10.1038/nbt1326.Google Scholar
Baniecki, M. L., Wirth, D. F. and Clardy, J. (2007). High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrobial Agents and Chemotherapy 51, 716723. doi: 10.1128/AAC.01144-06.Google Scholar
Barker, R. H. Jr., Urgaonkar, S., Mazitschek, R., Celatka, C., Skerlj, R., Cortese, J. F., Tyndall, E., Liu, H., Cromwell, M., Sidhu, A. B., Guerrero-Bravo, J. E., Crespo-Llado, K. N., Serrano, A. E., Lin, J. W., Janse, C. J., Khan, S. M., Duraisingh, M., Coleman, B. I., Angulo-Barturen, I., Jiménez-Díaz, M. B., Magán, N., Gómez, V., Ferrer, S., Martínez, M. S., Wittlin, S., Papastogiannidis, P., O'Shea, T., Klinger, J. D., Bree, M., Lee, E., Levine, M., Wiegand, R. C., Muñoz, B., Wirth, D. F., Clardy, J., Bathurst, I. and Sybertz, E. (2011). Aminoindoles, a novel scaffold with potent activity against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy 55, 26122622. doi:10.1128/AAC.01714-10.Google Scholar
Batty, K. T., Law, A. S., Stirling, V. and Moore, B. R. (2007). Pharmacodynamics of doxycycline in a murine malaria model. Antimicrobial Agents and Chemotherapy 51, 44774479. doi:10.1128/AAC.00529-07.Google Scholar
Bhattacharjee, A. K., Nichols, D. A., Gerena, L., Roncal, N. and Gutteridge, C. E. (2007). An in silico 3D pharmacophore model of chalcones useful in the design of novel antimalarial agents. Medicinal Chemistry 3, 317326.Google Scholar
Biagini, G. A., Fisher, N., Shone, A. E., Mubaraki, M. A., Srivastava, A., Hill, A., Antoine, T., Warman, A. J., Davies, J., Pidathala, C., Amewu, R. K., Leung, S. C., Sharma, R., Gibbons, P., Hong, D. W., Pacorel, B., Lawrenson, A. S., Charoensutthivarakul, S., Taylor, L., Berger, O., Mbekeani, A., Stocks, P. A., Nixon, G. L., Chadwick, J., Hemingway, J., Delves, M. J., Sinden, R. E., Zeeman, A. M., Kocken, C. H., Berry, N. G., O'Neill, P. M. and Ward, S. A. (2012). Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proceedings of the National Academy of Sciences, USA 109, 82988303. doi:10.1073/pnas.1205651109.Google Scholar
Booker, M. L., Bastos, C. M., Kramer, M. L., Barker, R. H. Jr., Skerlj, R., Sidhu, A. B., Deng, X., Celatka, C., Cortese, J. F., Guerrero Bravo, J. E., Crespo Llado, K. N., Serrano, A. E., Angulo-Barturen, I., Jiménez-Díaz, M. B., Viera, S., Garuti, H., Wittlin, S., Papastogiannidis, P., Lin, J. W., Janse, C. J., Khan, S. M., Duraisingh, M., Coleman, B., Goldsmith, E. J., Phillips, M. A., Muñoz, B., Wirth, D. F., Klinger, J. D., Wiegand, R. and Sybertza, E. (2010). Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. Journal of Biological Chemistry 285, 3305433064. doi:10.1074/jbc.M110.162081.Google Scholar
Brunner, R., Aissaoui, H., Boss, C., Bozdech, Z., Brun, R., Corminboeuf, O., Delahaye, S., Fischli, C., Heidmann, B., Kaiser, M., Kamber, J., Meyer, S., Papastogiannidis, P., Siegrist, R., Voss, T., Welford, R., Wittlin, S. and Binkert, C. (2012). Identification of a new chemical class of antimalarials. Journal of Infectious Diseases 206, 735743. doi:10.1093/infdis/jis418.Google Scholar
Burrows, J. N., Leroy, D., Lotharius, J. and Waterson, D. (2011). Challenges in antimalarial drug discovery. Future Medicinal Chemistry 3, 14011412. doi:10.4155/fmc.11.91.Google Scholar
Carlton, J. M., Adams, J. H., Silva, J. C., Bidwell, S. L., Lorenzi, H., Caler, E., Crabtree, J., Angiuoli, S. V., Merino, E. F., Amedeo, P., Cheng, Q., Coulson, R. M. R., Crabb, B. S., del Portillo, H. A., Essien, K., Feldblyum, T. V., Fernandez-Becerra, C., Gilson, P. R., Gueye, A. H., Guo, X., Kang/'a, S., Kooij, T. W. A., Korsinczky, M., Meyer, E. V. S., Nene, V., Paulsen, I., White, O., Ralph, S. A., Ren, Q., Sargeant, T. J., Salzberg, S. L., Stoeckert, C. J., Sullivan, S. A., Yamamoto, M. M., Hoffman, S. L., Wortman, J. R., Gardner, M. J., Galinski, M. R., Barnwell, J. W. and Fraser-Liggett, C. M. (2008). Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757763. doi:10.1038/nature07327.Google Scholar
Charman, S. A., Arbe-Barnes, S., Bathurst, I. C., Brund, R., Campbell, M., Charman, W. N., Chiu, F. C. K., Chollet, J., Craft, J. C., Creek, D. J., Don, Y., Matile, H., Maurer, M., Morizzi, J., Nguyen, T., Papastogiannidis, P., Scheurer, C., Shackleford, D. M., Sriraghavan, K., Stingelin, L., Tang, Y., Urwyler, H., Wang, X., White, K. L., Wittlin, S., Zhou, L. and Vennerstrom, J. L. (2011). Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proceedings of the National Academy of Sciences, USA 108, 44004405. doi:10.1073/pnas.1015762108.Google Scholar
Chatterjee, A. K. and Yeung, B. K. S. (2012). Back to the future: lessons learned in modern target-based and whole-cell lead optimization of antimalarials. Current Topics in Medicinal Chemistry 12, 473483. doi:10.2174/156802612799362977.CrossRefGoogle Scholar
Chong, C. R., Chen, X., Shi, L., Liu, J. O. and Sullivan, D. J. Jr. (2006). A clinical drug library screen identifies astemizole as an antimalarial agent. Nature Chemical Biology 2, 415416. doi:10.1038/nchembio806.Google Scholar
Coatney, G. R., Collins, W. E., McWarren, W. and Contacos, P. G. (1971). The Primate Malarias, US Government Printing Office, Washington, DC.Google Scholar
Coatney, G. R., Elder, H. A., Contacos, P. G., Getz, M. E., Greenland, R., Rossan, R. N. and Schmidt, L. H. (1961). Transmission of the M strain of Plasmodium cynomolgi to man. American Journal of Tropical Medicine and Hygiene 10, 673678.Google Scholar
Collins, W. E. (2002 a). Nonhuman primate models. I. Nonhuman primate host-parasite combinations. Methods in Molecular Medicine 72, 7784.Google ScholarPubMed
Collins, W. E. (2002 b). Nonhuman primate models. II. Infection of Saimiri and Aotus monkeys with Plasmodium vivax. Methods in Molecular Medicine 72, 8592.Google ScholarPubMed
Coslédan, F., Fraisse, L., Pellet, A., Guillou, F., Mordmuller, B., Kremsner, P. G., Moreno, A., Mazier, D., Maffrand, J. P. and Meunier, B. (2008). Selection of a trioxaquine as an antimalarial drug candidate. Proceedings of the National Academy of Sciences, USA 105, 1757917584. doi:10.1073/pnas.0804338105.Google Scholar
Coteron, J. M., Marco, M., Esquivias, J., Deng, X., White, K. L., White, J., Koltun, M., El Mazouni, F., Kokkonda, S., Katneni, K., Bhamidipati, R., Shackleford, D. M., Angulo-Barturen, I., Ferrer, S. B., Jiménez-Díaz, M. B., Gamo, F. J., Goldsmith, E. J., Charman, W. N., Bathurst, I., Floyd, D., Matthews, D., Burrows, J. N., Rathod, P. K., Charman, S. A. and Phillips, M. A. (2011). Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. Journal of Medicinal Chemistry 54, 55405561. doi:10.1021/jm200592f.Google Scholar
DiTusa, C. A., Gettayacamin, M., Kozar, M. P., Lin, A. J., Fracisco, S. D., Ohrt, C. and Magill, A. (2010). Primaquine and tafenoquine in the Plasmodium cynomolgi causal prophylactic malaria model. American Journal of Tropical Medicine and Hygiene 83, 81. doi: 10.1016/j.pt.2009.12.005.Google Scholar
Ferrer, P., Tripathi, A. K., Clark, M. A., Hand, C. C., Rienhoff, H. Y. Jr. and Sullivan, D. J. Jr. (2012). Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model. PLoS ONE 7, e37171. doi:10.1371/journal.pone.0037171.Google Scholar
Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R. and Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery 3, 509520. doi:10.1038/nrd1416.Google Scholar
Gabrielsson, J., Dolgos, H., Gillberg, P.-G. r., Bredberg, U., Benthem, B. and Duker, G. R. (2009). Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: strategic considerations. Drug Discovery Today 14, 358372. doi: 10.1016/j.drudis.2008.12.011.Google Scholar
Galinski, M. and Barnwell, J. (2008). Plasmodium vivax: who cares? Malaria Journal 7, S9. doi:10.1186/1475-2875-7-S1-S9.Google Scholar
Gamo, F. J., Sanz, L. M., Vidal, J., de Cózar, C., Alvarez, E., Lavandera, J. L., Vanderwall, D. E., Green, D. V., Kumar, V., Hasan, S., Brown, J. R., Peishoff, C. E., Cardon, L. R. and García-Bustos, J. F. (2010). Thousands of chemical starting points for antimalarial lead identification. Nature 465, 305310. doi:10.1038/nature09107.Google Scholar
Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M.-S., Nene, V., Shallom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M. A., Fairlamb, A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M. and Barrell, B. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498511. doi:10.1038/nature01097.Google Scholar
Gleeson, M. P., Hersey, A. and Hannongbua, S. (2011). In silico ADME models: a general assessment of their utility in drug discovery applications. Current Topics in Medicinal Chemistry 11, 358381. doi:10.2174/156802611794480927.Google Scholar
Guiguemde, W. A., Shelat, A. A., Bouck, D., Duffy, S., Crowther, G. J., Davis, P. H., Smithson, D. C., Connelly, M., Clark, J., Zhu, F., Jiménez-Díaz, M. B., Martínez, M. S., Wilson, E. B., Tripathi, A. K., Gut, J., Sharlow, E. R., Bathurst, I., El Mazouni, F., Fowble, J. W., Forquer, I., McGinley, P. L., Castro, S., Angulo-Barturen, I., Ferrer, S., Rosenthal, P. J., Derisi, J. L., Sullivan, D. J., Lazo, J. S., Roos, D. S., Riscoe, M. K., Phillips, M. A., Rathod, P. K., Van Voorhis, W. C., Avery, V. M. and Guy, R. K. (2010). Chemical genetics of Plasmodium falciparum. Nature 465, 311315. doi:10.1038/nature09099.CrossRefGoogle ScholarPubMed
Guiguemde, W. A., Shelat, A. A., García-Bustos, J. F., Diagana, T. T., Gamo, F. J. and Guy, R. K. (2012). Global phenotypic screening for antimalarials. Chemistry and Biology 19, 116129. doi:10.1016/j.chembiol.2012.01.004.Google Scholar
Guo, J., Guiguemde, A. W., Bentura-Marciano, A., Clark, J., Haynes, R. K., Chan, W. C., Wong, H. N., Hunt, N. H., Guy, R. K. and Golenser, J. (2012). Synthesis of artemiside and its effects in combination with conventional drugs against severe murine malaria. Antimicrobial Agents and Chemotherapy 56, 163173. doi:10.1128/ AAC.05006-11.Google Scholar
Jain, M., Vangapandu, S., Sachdeva, S., Singh, S., Singh, P. P., Jena, G. B., Tikoo, K., Ramarao, P., Kaul, C. L. and Jain, R. (2004). Discovery of a bulky 2-tert-butyl group containing primaquine analogue that exhibits potent blood-schizontocidal antimalarial activities and complete elimination of methemoglobin toxicity. Journal of Medicinal Chemistry 47, 285287. doi:10.1021/jm0304562.Google Scholar
Jiménez-Díaz, M. B., Mulet, T., Gómez, V., Viera, S., Alvarez, A., Garuti, H., Vázquez, Y., Fernández, A., Ibañez, J., Jiménez, M., Gargallo-Viola, D. and Angulo-Barturen, I. (2009 a). Quantitative measurement of plasmodium-infected erythrocytes in murine models of malaria by flow cytometry using bidimensional assessment of SYTO-16 fluorescence. Cytometry Part A 75, 225235. doi:10.1002/cyto.a.20647.Google Scholar
Jiménez-Díaz, M. B., Mulet, T., Viera, S., Gómez, V., Garuti, H., Ibañez, J., Alvarez-Doval, A., Shultz, L. D., Martínez, A., Gargallo-Viola, D. and Angulo-Barturen, I. (2009 b). Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL-2Rgnull mice engrafted with human erythrocytes. Antimicrobial Agents and Chemotherapy 53, 45334536. doi: 10.1128/AAC.00519-09.CrossRefGoogle ScholarPubMed
Jiménez-Díaz, M. B., Viera, S., Ibáñez, J., Mulet, T., Magán-Marchal, N., Garuti, H., Gómez, V., Cortés-Gil, L., Martínez, A., Ferrer, S., Fraile, M. T., Calderón, F., Fernández, E., Shultz, L. D., Leroy, D., Wilson, D. M., García-Bustos, J. F., Gamo, F. J. and Angulo-Barturen, I. (2013). A new paradigm to accelerate drug discovery of new antimalarials using in vivo screening. PLoS ONE. In press.Google Scholar
Keldenich, J. (2009). Measurement and prediction of oral absorption. Chemistry and Biodiversity 6, 20002013. doi:10.1002/cbdv.200900054.Google Scholar
Kelly, J. X., Smilkstein, M. J., Brun, R., Wittlin, S., Cooper, R. A., Lane, K. D., Janowsky, A., Johnson, R. A., Dodean, R. A., Winter, R., Hinrichs, D. J. and Riscoe, M. K. (2009). Discovery of dual function acridones as a new antimalarial chemotype. Nature 459, 270273. doi:10.1038/nature07937.Google Scholar
Khan, M. O. F., Levi, M. S., Tekwani, B. L., Khan, S. I., Kimura, E. and Borne, R. F. (2009). Synthesis and antimalarial activities of cyclen 4-aminoquinoline analogs. Antimicrobial Agents and Chemotherapy 53, 13201324. doi: 10.1128/AAC.01304-08.Google Scholar
Kinnamon, K. E. and Rothe, W. E. (1975). Biological screening in the U.S. Army antimalarial drug development program. American Journal of Tropical Medicine and Hygiene 24, 174178.Google Scholar
Kocken, C. H. M., Remarque, E. J., Dubbeld, M. A., Wein, S., Van Der Wel, A., Verburgh, R. J., Vial, H. J. and Thomas, A. W. (2009). Statistical model to evaluate in vivo activities of antimalarial drugs in a Plasmodium cynomolgi-macaque model for Plasmodium vivax malaria. Antimicrobial Agents and Chemotherapy 53, 421427. doi: 10.1128/AAC.00576-08.Google Scholar
Landau, I. and Gautret, P. (1998). Animal models: rodents. In Malaria: Parasite b, Pathogenesis and Protection (ed. Sherman, I. W.), pp. 401417. ASM Press, Washington, DC.Google Scholar
Lin, A., Kozar, M. P., O'Neil, M. T., Melendez, V., Saunders, D. and Magill, A. J. (2009). Lead optimization and pre-clinical studies of imidazolidinedione derivatives as malaria prophylactic agents. Tropical Medicine and International Health 14, 120.Google Scholar
Lowes, D., Pradhan, A., Iyer, L. V., Parman, T., Gow, J., Zhu, F., Furimsky, A., Lemoff, A., Guiguemde, W. A., Sigal, M., Clark, J. A., Wilson, E., Tang, L., Connelly, M. C., DeRisi, J. L., Kyle, D. E., Mirsalis, J. and Guy, R. K. (2012). Lead optimization of antimalarial propafenone analogues. Journal of Medicinal Chemistry 55, 60876093. doi:10.1021/jm300286a.Google Scholar
Malleret, B., Claser, C., Ong, A. S., Suwanarusk, R., Sriprawat, K., Howland, S. W., Russell, B., Nosten, F. and Renia, L. (2011). A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Scientific Reports 1, 118. doi:10.1038/srep00118.Google Scholar
Moore, B. R., Batty, K. T., Andrzejewski, C., Jago, J. D., Page-Sharp, M. and Ilett, K. F. (2008). Pharmacokinetics and pharmacodynamics of piperaquine in a murine malaria model. Antimicrobial Agents and Chemotherapy 52, 306311. doi:10.1128/AAC.00878-07.CrossRefGoogle Scholar
Moore, B. R., Ilett, K. F., Page-Sharp, M., Jago, J. D. and Batty, K. T. (2009). Piperaquine pharmacodynamics and parasite viability in a murine malaria model. Antimicrobial Agents and Chemotherapy 53, 27072713. doi: 10.1128/AAC.00056-09.CrossRefGoogle Scholar
Moore, B. R., Page-Sharp, M., Stoney, J. R., Ilett, K. F., Jago, J. D. and Batty, K. T. (2011). Pharmacokinetics, pharmacodynamics, and allometric scaling of chloroquine in a murine malaria model. Antimicrobial Agents and Chemotherapy 55, 38993907. doi: 10.1128/AAC.00067-11.Google Scholar
Moore, J. M., Kumar, N., Shultz, L. D. and Rajan, T. V. (1995). Maintenance of the human malarial parasite Plasmodium falciparum in scid mice and transmission of gametocytes to mosquitoes. Journal of Experimental Medicine 181, 22652270. doi: 10.1084/jem.181.6.2265.CrossRefGoogle ScholarPubMed
Moreno, A., Badell, E., Van Rooijen, N. and Druilhe, P. (2001). Human malaria in immunocompromised mice: new in vivo model for chemotherapy studies. Antimicrobial Agents and Chemotherapy 45, 18471853. doi:10.1128/AAC.45.6.1847-1853.2001.Google Scholar
Morosan, S., Hez-Deroubaix, S., Lunel, F., Renia, L., Giannini, C., Van Rooijen, N., Battaglia, S., Blanc, C., Eling, W., Sauerwein, R., Hannoun, L., Belghiti, J., Brechot, C., Kremsdorf, D. and Druilhe, P. (2006). Liver-stage development of Plasmodium falciparum, in a humanized mouse model. Journal of Infectious Diseases 193, 9961004. doi:10.1086/500840.Google Scholar
Nagle, A., Wu, T., Kuhen, K., Gagaring, K., Borboa, R., Francek, C., Chen, Z., Plouffe, D., Lin, X., Caldwell, C., Ek, J., Skolnik, S., Liu, F., Wang, J., Chang, J., Li, C., Liu, B., Hollenbeck, T., Tuntland, T., Isbell, J., Chuan, T., Alper, P. B., Fischli, C., Brun, R., Lakshminarayana, S. B., Rottmann, M., Diagana, T. T., Winzeler, E. A., Glynne, R., Tully, D. C. and Chatterjee, A. K. (2012). Imidazolopiperazines: lead optimization of the second-generation antimalarial agents. Journal of Medicinal Chemistry 55, 42444273. doi:10.1021/jm300041e.CrossRefGoogle ScholarPubMed
Nájera, J. A., González-Silva, M. and Alonso, P. L. (2011). Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Medicine 8, e1000412. doi:10.1371/journal.pmed.1000412.Google Scholar
Nilsen, A., LaCrue, A. N., White, K. L., Forquer, I. P., Cross, R. M., Marfurt, J., Mather, M. W., Delves, M. J., Shackleford, D. M., Saenz, F. E., Morrisey, J. M., Steuten, J., Mutka, T., Li, Y., Wirjanata, G., Ryan, E., Duffy, S., Kelly, J. X., Sebayang, B. F., Zeeman, A.-M., Noviyanti, R., Sinden, R. E., Kocken, C. H. M., Price, R. N., Avery, V. M., Angulo-Barturen, I., Jiménez-Díaz, M. B., Ferrer, S., Herreros, E., Sanz, L. M., Gamo, F.-J., Bathurst, I., Burrows, J. N., Siegl, P., Guy, R. K., Winter, R. W., Vaidya, A. B., Charman, S. A., Kyle, D. E., Manetsch, R. and Riscoe, M. K. (2013). Quinolone-3-Diarylethers: a new class of antimalarial drug. Science Translational Medicine 5, 177ra137. doi:10.1126/scitranslmed.3005029.CrossRefGoogle ScholarPubMed
Obaldia, N., Kotecka, B. M., Edstein, M. D., Haynes, R. K., Fugmann, B., Kyle, D. E. and Rieckmann, K. H. (2009). Evaluation of artemisone combinations in Aotus monkeys infected with Plasmodium falciparum. Antimicrobial Agents and Chemotherapy 53, 35923594. doi:10.1128/AAC.00471-09.Google Scholar
O'Brien, C., Henrich, P. P., Passi, N. and Fidock, D. A. (2011). Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Current Opinion in Infectious Diseases 24, 570577. doi:10.1097/QCO.0b013e32834cd3ed.Google Scholar
Ockenhouse, C. F., Magill, A., Smith, D. and Milhous, W. (2005). History of U.S. military contributions to the study of malaria. Military Medicine 170, 1216.CrossRefGoogle Scholar
Paterson, S. and Lello, J. (2003). Mixed models: getting the best use of parasitological data. Trends in Parasitology 19, 370375. doi:10.1016/S1471-4922(03)00149-1.Google Scholar
Payne, D. J., Gwynn, M. N., Holmes, D. J. and Pompliano, D. L. (2007). Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery 6, 2940. doi: 10.1038/nrd2201.Google Scholar
Pereira, M. R., Henrich, P. P., Sidhu, A. B., Johnson, D., Hardink, J., Van Deusen, J., Lin, J., Gore, K., O'Brien, C., Wele, M., Djimde, A., Chandra, R. and Fidock, D. A. (2011). In vivo and in vitro antimalarial properties of azithromycin-chloroquine combinations that include the resistance reversal agent amlodipine. Antimicrobial Agents and Chemotherapy 55, 31153124. doi: 10.1128/AAC.01566-10.Google Scholar
Peters, W. and Robinson, B. L. (1999). Malaria. In Handbook of Animal Models of Infection (ed. Zak, O. and Sande, M. A.), pp. 757773. Academic Press, London.CrossRefGoogle Scholar
Plouffe, D., Brinker, A., McNamara, C., Henson, K., Kato, N., Kuhen, K., Nagle, A., Adrian, F., Matzen, J. T., Anderson, P., Nam, T. G., Gray, N. S., Chatterjee, A., Janes, J., Yan, S. F., Trager, R., Caldwell, J. S., Schultz, P. G., Zhou, Y. and Winzeler, E. A. (2008). In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proceedings of the National Academy of Sciences, USA 105, 90599064. doi:10.1073/pnas.0802982105.Google Scholar
Powles, M. A., Allocco, J., Yeung, L., Nare, B., Liberator, P. and Schmatz, D. (2012). MK-4815, a potential new oral agent for treatment of malaria. Antimicrobial Agents and Chemotherapy 56, 24142419. doi:10.1128/ AAC.05326-11.Google Scholar
Prugnolle, F., McGee, K., Keebler, J. and Awadalla, P. (2008). Selection shapes malaria genomes and drives divergence between pathogens infecting hominids versus rodents. BMC Evolutionary Biology 8, 223. doi:10.1186/1471-2148-8-223.Google Scholar
Prugnolle, F., Ollomo, B., Durand, P., Yalcindag, E., Arnathau, C. l., Elguero, E., Berry, A., Pourrut, X., Gonzalez, J.-P., Nkoghe, D., Akiana, J., Verrier, D., Leroy, E., Ayala, F. J. and Renaud, F. (2011). African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains. Proceedings of the National Academy of Sciences, USA 108, 1194811953. doi:10.1073/pnas.1109368108.Google Scholar
Rottmann, M., McNamara, C., Yeung, B. K. S., Lee, M. C. S., Zou, B., Russell, B., Seitz, P., Plouffe, D. M., Dharia, N. V., Tan, J., Cohen, S. B., Spencer, K. R., González-Páez, G. E., Lakshminarayana, S. B., Goh, A., Suwanarusk, R., Jegla, T., Schmitt, E. K., Beck, H. P., Brun, R., Nosten, F., Renia, L., Dartois, V., Keller, T. H., Fidock, D. A., Winzeler, E. A. and Diagana, T. T. (2010). Spiroindolones, a potent compound class for the treatment of malaria. Science 329, 11751180. doi:10.1126/science.1193225.Google Scholar
Sacci, J. B. Jr., Alam, U., Douglas, D., Lewis, J., Tyrrell, D. L., Azad, A. F. and Kneteman, N. M. (2006). Plasmodium falciparum infection and exoerythrocytic development in mice with chimeric human livers. International Journal for Parasitology 36, 353360. doi: 10.1016/j.ijpara.2005.10.014.CrossRefGoogle ScholarPubMed
Saenz, F. E., Mutka, T., Udenze, K., Oduola, A. M. J. and Kyle, D. E. (2012). Novel 4-aminoquinoline analogs highly active against the blood and sexual stages of Plasmodium in vivo and in vitro. Antimicrobial Agents and Chemotherapy 56, 46854692. doi:10.1128/AAC.01061-12.Google Scholar
Salom-Roig, X. J., Hamze, A., Calas, M. and Vial, H. J. (2005). Dual molecules as new antimalarials. Combinatorial Chemistry and High Throughput Screen 8, 4962. doi: 10.2174/1386207053328219.Google Scholar
Sanni, L. A., Fonseca, L. F. and Langhorne, J. (2002). Mouse models for eryhtrocytic-stage malaria. In Malaria Methods and Protocols (ed. Doolan, D. L.), pp. 5776. Humana. Press, Inc., Totowa.Google Scholar
Sanz, L. M., Jiménez-Díaz, M. B., Crespo, B., De Cózar, C., Almela, M. J., Angulo-Barturen, I., Castañeda, P., Ibañez, J., Fernandez, E. P., Ferrer, S., Herreros, E., Lozano, S., Martínez, M. S., Rueda, L., Burrows, J. N., García-Bustos, J. F. and Gamo, F. J. (2011). Cyclopropyl carboxamides, a chemically novel class of antimalarial agents identified in a phenotypic screen. Antimicrobial Agents and Chemotherapy 55, 57405745. doi:10.1128/AAC.05188-11.Google Scholar
Scheller, L. F., Wirtz, R. A. and Azad, A. F. (1994). Susceptibility of different strains of mice to hepatic infection with Plasmodium berghei. Infection and Immunity 62, 48444847.Google Scholar
Shultz, L. D., Brehm, M. A., García-Martínez, J. V. and Greiner, D. L. (2012). Humanized mice for immune system investigation: progress, promise and challenges. Nature Reviews Immunology 12, 786798. doi:10.1038/nri3311.Google Scholar
Skerlj, R. T., Bastos, C. M., Booker, M. L., Kramer, M. L., Barker, R. H., Celatka, C. A., O'Shea, T. J., Munoz, B., Sidhu, A. B., Cortese, J. F., Wittlin, S., Papastogiannidis, P., Angulo-Barturen, I., Jiménez-Díaz, M. B. and Sybertz, E. (2011). Optimization of potent inhibitors of P. falciparum dihydroorotate dehydrogenase for the treatment of malaria. ACS Medicinal Chemistry Letters 2, 708713. doi: 10.1021/ml200143c.Google Scholar
Slater, L. B. (2005). Malarial birds: modeling infectious human disease in animals. Bulletin of the History of Medicine 79, 261294. doi: 10.1353/bhm.2005.0092.CrossRefGoogle ScholarPubMed
Stewart, V. A. (2003). Plasmodium vivax under the microscope: the Aotus model. Trends in Parasitology 19, 589594. doi: S1471492203002812.Google Scholar
The malERA Consultative Group on Drugs (2011). A research agenda for malaria eradication: drugs. PLoS Medicine 8, e1000402. doi:10.1371/journal.pmed.1000402.Google Scholar
Thompson, P. E. and Werbel, L. M. (1972). Antimalarial Agents. Chemistry and Pharmacology, Academic Press, New York.Google Scholar
van der Worp, H. B., Howells, D. W., Sena, E. S., Porritt, M. J., Rewell, S., O'Collins, V. and Macleod, M. R. (2010). Can animal models of disease reliably inform human studies? PLoS Medicine 7, e1000245. doi:10.1371/journal.pmed.1000245.Google Scholar
Vaughan, A. M., Mikolajczak, S. A., Wilson, E. M., Grompe, M., Kaushansky, A., Camargo, N., Bial, J., Ploss, A. and Kappe, S. H. (2012). Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. Journal of Clinical Investigation 122, 36183628. doi:62684 doi: 10.1172/JCI62684.Google Scholar
Weisman, J. L., Liou, A. P., Shelat, A. A., Cohen, F. E., Guy, R. K. and DeRisi, J. L. (2006). Searching for new antimalarial therapeutics amongst known drugs. Chemical Biology and Drug Design 67, 409416. doi:JPP391 doi:10.1111/j.1747-0285.2006.00391.x.Google Scholar
Wengelnik, K., Vidal, V., Ancelin, M. L., Cathiard, A. M., Morgat, J. L., Kocken, C. H., Calas, M., Herrera, S., Thomas, A. W. and Vial, H. J. (2002). A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 295, 13111314. doi:10.1126/science.1067236.Google Scholar
White, N. J. (2008). Plasmodium knowlesi: the fifth human malaria parasite. Clinical Infectious Diseases 46, 172173. doi:10.1086/524889.Google Scholar
White, N. J. (2011). The parasite clearance curve. Malaria Journal 10, 278. doi: 1475-2875-10-278 doi:10.1186/1475-2875-10-278.Google Scholar
WHO (2010 a). Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000–2010. World Health Organization, Geneva, Switzerland.Google Scholar
WHO (2010 b). World Malaria Report. World Health Organization, Geneva, Switzerland.Google Scholar
Yeates, C. L., Batchelor, J. F., Capon, E. C., Cheesman, N. J., Fry, M., Hudson, A. T., Pudney, M., Trimming, H., Woolven, J., Bueno, J. M., Chicharro, J., Fernandez, E., Fiandor, J. M., Gargallo-Viola, D., Gomez de las Heras, F., Herreros, E. and Leon, M. L. (2008). Synthesis and structure-activity relationships of 4-pyridones as potential antimalarials. Journal of Medicinal Chemistry 51, 28452852. doi: 10.1021/jm0705760.Google Scholar
Younis, Y., Douelle, F., Feng, T. S., Gonzalez Cabrera, D., Le Manach, C., Nchinda, A. T., Duffy, S., White, K. L., Shackleford, D. M., Morizzi, J., Mannila, J., Katneni, K., Bhamidipati, R., Zabiulla, K. M., Joseph, J. T., Bashyam, S., Waterson, D., Witty, M. J., Hardick, D., Wittlin, S., Avery, V., Charman, S. A. and Chibale, K. (2012). 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. Journal of Medicinal Chemistry 55, 34793487. doi:10.1021/jm3001373.Google Scholar
Zhang, Y., Clark, J. A., Connelly, M. C., Zhu, F., Min, J., Guiguemde, W. A., Pradhan, A., Iyer, L., Furimsky, A., Gow, J., Parman, T., El Mazouni, F., Phillips, M. A., Kyle, D. E., Mirsalis, J. and Guy, R. K. (2012). Lead optimization of 3-carboxyl-4(1 H)-quinolones to deliver orally bioavailable antimalarials. Journal of Medicinal Chemistry 55, 42054219. doi:10.1021/jm201642z.Google Scholar