Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T10:13:20.309Z Has data issue: false hasContentIssue false

Analysis of a new genetic cross between two East African Trypanosoma brucei clones

Published online by Cambridge University Press:  06 April 2009

J. Schweizer
Affiliation:
Swiss Tropical Institute, Postfach, CH-4002 Basel, Switzerland
H. Pospichal
Affiliation:
Swiss Tropical Institute, Postfach, CH-4002 Basel, Switzerland
G. Hide
Affiliation:
Wellcome Unit of Molecular Parasitology, University of Glasgow, Bearsden Road, Glasgow G61 1QH, Scotland
N. Buchanan
Affiliation:
Wellcome Unit of Molecular Parasitology, University of Glasgow, Bearsden Road, Glasgow G61 1QH, Scotland
A. Tait
Affiliation:
Wellcome Unit of Molecular Parasitology, University of Glasgow, Bearsden Road, Glasgow G61 1QH, Scotland
L. Jenni
Affiliation:
Swiss Tropical Institute, Postfach, CH-4002 Basel, Switzerland

Summary

Two clones of East African Trypanosoma brucei, with distinct homozygous isoenzyme patterns for one of three enzymes examined, were cotransmitted through the tsetse fly vector Glossina morsitans centralis. Flies with mature infections were individually fed on mice and the subsequent bloodstream form populations analysed for the presence of hybrid trypanosomes by isoenzyme analysis. Several combinations have previously been detected using this approach (Schweizer, Tait & Jenni, 1988; Sternberg et al. 1989). Four clones were isolated from one of the hybrid-containing populations. They showed a hybrid phenotype, as would be expected for the F1 progeny in a diploid Mendelian system. The analysis of the progeny clones, using two gene probes which detect restriction fragment length polymorphisms between the two parental stocks, showed that alleles had segregated at each locus and given rise to three different non-parental combinations of alleles in the hybrid progeny. Characterization of the hybrid progeny clones by PFGE (pulsed field gradient gel electrophoresis) revealed that all progeny clones were recombinant for the intermediate size chromosomes. From the analysis of the segregation of the larger chromosomes, marked by P0K (phosphoglycerate kinase) and CP (cysteine protease) gene probes, it was inferred that the progeny clones did not result from a direct fusion of diploid cells. Results with the PGK probe fit into a classical system with meiosis and subsequent fusion of the nuclei to form diploid progeny. On the other hand, blots with the CP probe as well as some of the ethidium bromide stained PFGE gels revealed the existence of non-parental size chromosomes in some of the hybrid progeny. This phenomenon was observed previously (Gibson, 1989) and further investigation is required to elucidate the mechanism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brun, R. & Schönenberger, M. (1981). Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Zeitschrift für Parasitenkunde 66, 1724.CrossRefGoogle ScholarPubMed
Geigy, R. & Kauffmann, M. (1973). Sleeping sickness survey in the Serengeti Area (Tanzania) 1971. Acta Tropica 30, 1248.Google ScholarPubMed
Gibson, W. C. (1989). Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Parasitology 99, 391402.CrossRefGoogle ScholarPubMed
Gibson, W. C. & Garside, L. (1990). Kinetoplast DNA minicircles are inherited from both parents in genetic hybrids of Trypanosoma brucei. Molecular and Biochemical Parasitology 42, 4554.CrossRefGoogle ScholarPubMed
Gibson, W. C., Garside, L. & Bailey, M. (1992). Trisomy and chromosome size changes in hybrid trypanosomes from a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Molecular and Biochemical Parasitology 52, 189200.CrossRefGoogle Scholar
Gibson, W. C., Gashumba, J. K. (1983). Isoenzyme characterization of some Trypanozoon stocks from a recent trypanosomiasis epidemic in Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 114–18.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F., De, C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Gibson, W. C., Osinga, K. A., Michels, P. A. M. & Borst, P. (1985). Trypanosomes of subgenus Trypanozoon are diploid for housekeeping genes. Molecular and Biochemical Parasitology 16, 231–42.CrossRefGoogle ScholarPubMed
Gibson, W. & Whittington, H. (1993). Genetic exchange in Trypanosoma brucei: selection of hybrid trypanosomes by introduction of genes conferring drug resistance. Molecular and Biochemical Parasitology 60, 1926.CrossRefGoogle ScholarPubMed
Gottesdiener, K., Garciá-Ãnoveros, J., Lee, M. G.-S. & Van Der Ploeg, L. H. T. (1990). Chromosome organization of the protozoan Trypanosoma brucei. Molecular and Cellular Biology 10, 6079–83.Google ScholarPubMed
Hide, G., Cattand, P., Leray, D., Barry, J. D. & Tait, A. (1990). The identification of Trypanosoma brucei subspecies using repetitive DNA sequences. Molecular and Biochemical Parasitology 39, 213–26.CrossRefGoogle ScholarPubMed
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E. & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173–5.CrossRefGoogle ScholarPubMed
Jess, W., Hammer, A. & Cornelissen, A. W. C. A. (1989). Complete sequence of the gene encoding the largest subunit of RNA polymerase I of Trypanosoma brucei. FEBS Letters 249, 123–8.CrossRefGoogle ScholarPubMed
Mottram, J. C., North, M. J., Barry, J. D. & Coombs, G. H. (1989). A cysteine proteinase cDNA from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Letters 258, 211–15.CrossRefGoogle ScholarPubMed
Osinga, K. A., Swinkels, B. W., Gibson, W. C., Borst, P., Veeneman, G. H., Van Boom, J. H., Michels, P. A. M. & Opperdoes, F. R. (1985). Topogenesis of microbody enzymes: a sequence comparison of the genes for the glycosomal (microbody) and cytosolic phosphoglycerate kinases of Trypanosoma brucei. EMBO Journal 4, 3811–17.CrossRefGoogle ScholarPubMed
Paindavoine, P., Zampetti-Bosseler, F., Pays, E., Schweizer, J., Guyaux, M., Jenni, L. & Steinert, M. (1986). Trypanosome hybrids generated in tsetse flies by nuclear fusion. EMBO Journal 5, 3631–6.CrossRefGoogle ScholarPubMed
Richner, D., Schweizer, J., Betschart, B. & Jenni, L. (1989). Characterization of West African Trypanosoma (Trypanozoon) brucei isolates from man and animals using isoenzyme analysis and DNA hybridization. Parasitology Research 76, 80–5.CrossRefGoogle ScholarPubMed
Schwartz, D. C. & Cantor, C. R. (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 6775.CrossRefGoogle ScholarPubMed
Schweizer, J. & Jenni, L. (1991). Hybrid formation in the life-cycle of Trypanosoma (T.) brucei: detection of hybrid trypanosomes in a midgut-derived isolate. Acta Tropica 48, 319–21.CrossRefGoogle Scholar
Schweizer, J., Pospichal, H. & Jenni, L. (1991). Hybrid formation between African trypanosomes in vitro. Acta Tropica 49, 237–40.CrossRefGoogle ScholarPubMed
Schweizer, J., Tait, A. & Jenni, L. (1988). The timing and frequency of hybrid formation in African trypanosomes during cyclical transmission. Parasitology Research 75, 98101.CrossRefGoogle ScholarPubMed
Sternberg, J., Tait, A., Haley, S., Wells, J. M., Le Page, R. W. F., Schweizer, J. & Jenni, L. (1988). Gene exchange in African trypanosomes: characterisation of a new hybrid genotype. Molecular and Biochemical Parasitology 27, 191200.CrossRefGoogle ScholarPubMed
Sternberg, J., Turner, C. M. R., Wells, J. M., Ranford-Cartwright, L. C., Le Page, R. W. F. & Tait, A. (1989). Gene exchange in African trypanosomes: frequency and allelic segregation. Molecular and Biochemical Parasitology 34, 269–80.CrossRefGoogle ScholarPubMed
Tait, A. (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 287, 536–8.CrossRefGoogle ScholarPubMed
Tait, A., Babiker, E. A. & Le Ray, D. (1984). Enzyme variation in Trypanosoma brucei spp. 1. Evidence for sub-speciation of Trypanosoma brucei gambiense. Parasitology 89, 311–26.CrossRefGoogle Scholar
Tait, A., Barry, J. D., Wink, R., Sanderson, A. & Crowe, J. S. (1985). Enzyme variation in T. brucei spp. II. Evidence for T. b. rhodesiense being a set of variants of T. b. brucei. Parasitology 90, 89100.CrossRefGoogle Scholar
Tait, A. & Turner, C. M. R. (1990). Genetic exchange in Trypanosoma brucei. Parasitology Today 6, 70–5.CrossRefGoogle ScholarPubMed
Turner, C. M. R., Sternberg, J., Buchanan, N., Smith, E., Hide, G. & Tait, A. (1990). Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy. Parasitology 101, 377–86.CrossRefGoogle ScholarPubMed
Van Dee Ploeg, L. H. T., Schwartz, D. C., Cantor, C. R. & Borst, P. (1984). Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell 37, 7784.CrossRefGoogle Scholar
Van Der Ploeg, L. H. T., Smith, C. L., Polvere, R. I. & Gottesdiener, K. M. (1989). Improved separation of chromosome-sized DNA from Trypanosoma brucei stock, 427–60. Nucleic Acids Research 17, 3217–27.CrossRefGoogle ScholarPubMed
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei: rationalization of the experimental approach. Annales de la Société beige de Médecine tropicale 55, 123.Google ScholarPubMed
Wells, J. M., Prospero, T. D., Jenni, L. & Le Page, R. W. F. (1987). DNA contents and molecular karyotypes of hybrid Trypanosoma brucei. Molecular and Biochemical Parasitology 249, 103–16.CrossRefGoogle Scholar