Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T13:04:20.719Z Has data issue: false hasContentIssue false

Albendazole solid dispersions against alveolar echinococcosis: a pharmacotechnical strategy to improve the efficacy of the drug

Published online by Cambridge University Press:  27 April 2020

Julia Fabbri
Affiliation:
Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Patricia Eugenia Pensel
Affiliation:
Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Clara María Albani
Affiliation:
Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Lurdes Milagros Lopez
Affiliation:
Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
Analia Simonazzi
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (UNSa), Salta, Argentina
José María Bermudez
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (UNSa), Salta, Argentina
Santiago Daniel Palma
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Laboratorio de Farmacotecnia, Facultad de Ciencias Químicas (FCdQ), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
María Celina Elissondo*
Affiliation:
Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
*
Author for correspondence: María Celina Elissondo, E-mail: [email protected]

Abstract

Alveolar echinococcosis is a neglected parasitic zoonosis caused by Echinococcus multilocularis. The pharmacological treatment is based on albendazole (ABZ). However, the low water solubility of the drug produces a limited dissolution rate, with the consequent failure in the treatment of the disease. Solid dispersions are a successful pharmacotechnical strategy to improve the dissolution profile of poorly water-soluble drugs. The aim of this work was to determine the in vivo efficacy of ABZ solid dispersions using poloxamer 407 as a carrier (ABZ:P407 solid dispersions (SDs)) in the murine intraperitoneal infection model for secondary alveolar echinococcosis. In the chemoprophylactic efficacy study, the ABZ suspension, the ABZ:P407 SDs and the physical mixture of ABZ and poloxamer 407 showed a tendency to decrease the development of murine cysts, causing damage to the germinal layer. In the clinical efficacy study, the ABZ:P407 SDs produced a significant decrease in the weight of murine cysts. In addition, the SDs produced extensive damage to the germinal layer. The increase in the efficacy of ABZ could be due to the improvement of water solubility and wettability of the drug due to the surfactant nature of poloxamer 407. In conclusion, this study is the basis for further research. This pharmacotechnical strategy might in the future offer novel treatment alternatives for human alveolar echinococcosis.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abulaihaiti, M, Wu, XW, Qiao, L, Lv, HL, Zhang, HW, Aduwayi, N, Wang, YJ, Wang, XC and Peng, XY (2015) Efficacy of albendazole-chitosan microsphere-based treatment for alveolar echinococcosis in mice. PLoS Neglected Tropical Disease 9, e0003950.CrossRefGoogle ScholarPubMed
Albani, CM, Pensel, PE, Elissondo, N, Gambino, G and Elissondo, MC (2015) In vivo activity of albendazole in combination with thymol against Echinococcus multilocularis. Veterinary Parasitology 212, 193199.CrossRefGoogle ScholarPubMed
Amidon, GL, Lennernäs, H, Shah, VP and Crison, JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in Vitro drug product dissolution and in Vivo bioavailability. Pharmaceutical Research 12, 413420.CrossRefGoogle ScholarPubMed
Bardonnet, K, Vuitton, DA, Grenouillet, F, Mantion, GA, Delabrousse, E, Blagosklonov, O, Miguet, JP and Bresson-Hadni, S (2013) 30-yr Course and favorable outcome of alveolar echinococcosis despite multiple metastatic organ involvement in a non-immune suppressed patient. Annals of Clinical Microbiology and Antimicrobials 12, 1.CrossRefGoogle Scholar
Brehm, K and Koziol, U (2014) On the importance of targeting parasite stem cells in anti-echinococcosis drug development. Parasite 21, 72.CrossRefGoogle ScholarPubMed
Brunetti, E, Kern, P and Vuitton, DA (2010) Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Tropica 114, 116.CrossRefGoogle ScholarPubMed
Castro, N, Márquez-Caraveo, C, Brundage, RC, González-Esquivel, D, Suárez, AM, Góngora, F, Jara, A, Urizar, J, Lanao, JM and Jung, H (2009) Population pharmacokinetics of albendazole in patients with neurocysticercosis. International Journal of Clinical Pharmacology and Therapeutics 47, 679685.Google ScholarPubMed
Ceballos, L, Alvarez, L, Sánchez Bruni, S, Elissondo, MC, Dopchiz, M, Denegri, G, Torrado, J and Lanusse, CE (2006) Development of a cyclodextrin-based flubendazole formulation to control secondary echinococcosis: pharmacokinetics, hydatid cyst morphology and efficacy in mice. Journal of Veterinary Pharmacology and Therapeutics 29, 8586.Google Scholar
Ceballos, L, Elissondo, MC, Moreno, L, Dopchiz, M, Sánchez Bruni, S, Denegri, G, Alvarez, L and Lanusse, CE (2008) Albendazole treatment in cystic echinococcosis: pharmacokinetics and clinical efficacy of two different aqueous formulations. Parasitology Research 103, 355362.CrossRefGoogle ScholarPubMed
Ceballos, L, Elissondo, MC, Sánchez Bruni, S, Denegri, G, Alvarez, L and Lanusse, CE (2009) Flubendazole in cystic echinococcosis therapy: pharmaco-parasitological evaluation in mice. Parasitology International 58, 354358.CrossRefGoogle ScholarPubMed
Ceballos, L, Elissondo, MC, Sánchez Bruni, S, Confalonieri, A, Denegri, G, Alvarez, L and Lanusse, CE (2010) Chemoprophylactic activity of flubendazole in cystc echinococcosis. Chemotherapy 56, 386392.CrossRefGoogle Scholar
Chen, Y, Zhang, GGZ, Neilly, J, Marsh, K, Mawhinney, D and Sanzgiri, YD (2004) Enhancing the bioavailability of ABT-963 using solid dispersion containing pluronic F-68. International Journal of Pharmaceutics 286, 6980.CrossRefGoogle ScholarPubMed
Chiou, WL and Riegelman, S (1971) Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences 60, 12811302.CrossRefGoogle ScholarPubMed
Cid, AG, Simonazzi, A, Palma, SD and Bermúdez, JM (2019) Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Therapeutic Delivery 10, 363382.CrossRefGoogle ScholarPubMed
Collett, JH and Popli, H (2000) Poloxamer. In Kibbe, AH (ed.), Handbook of Pharmaceutical Excipients. London: Pharmaceutical Press, pp. 385388.Google Scholar
Desai, J, Alexander, K and Riga, A (2006) Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. International Journal of Pharmaceutics 308, 115123.CrossRefGoogle ScholarPubMed
Dvorožňáková, E, Hrčková, G, Borošková, Z, Velebný, S and Dubinský, P (2004) Effect of treatment with free and liposomized albendazole on selected immunological parameters and cyst growth in mice infected with Echinococcus multilocularis. Parasitology International 53, 315325.CrossRefGoogle ScholarPubMed
Eckert, J and Deplazes, P (2004) Biological, epidemiological, and clinical aspects of Echinococcosis, a zoonosis of increasing concern. Clinical Microbiology Reviews 17, 107135.CrossRefGoogle ScholarPubMed
Edwards, G and Breckenridge, A (1988) Clinical pharmacokinetics of anthelmintic drugs. Clinical Pharmacokinetics 15, 6793.CrossRefGoogle ScholarPubMed
Elissondo, MC, Ceballos, L, Dopchiz, M, Andresiuk, V, Alvarez, L, Sánchez Bruni, S, Lanusse, C and Denegri, G (2007) In vitro And in Vivo effects of flubendazole on Echinococcus granulosus metacestodes. Parasitology Research 100, 10031009.CrossRefGoogle ScholarPubMed
Horton, RJ (1997) Albendazole in treatment of human cystic echinococcosis: 12 years of experience. Acta Tropica 64, 7993.CrossRefGoogle Scholar
Hu, C, Liu, Z, Liu, C, Zhang, Y, Fan, H and Qian, F (2020) Improvement of antialveolar echinococcosis efficacy of albendazole by a novel nanocrystalline formulation with enhanced oral bioavailability. ACS Infectious Diseases 6(5), 802810. doi: https://doi.org/10.1021/acsinfecdis.9b00231.CrossRefGoogle ScholarPubMed
Kabanov, AV, Batrakova, EV and Alakhov, VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release 82, 189212.CrossRefGoogle Scholar
Kasim, NA, Whitehouse, M, Ramachandran, C, Bermejo, M, Lennernäs, H, Hussain, AS, Junginger, HE, Stavchansky, SA, Midha, KK, Shah, VP and Amidon, GL (2004) Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Molecular Pharmaceutics 1, 8596.CrossRefGoogle ScholarPubMed
Kern, P, Menezes da Silva, A, Akhan, O, Müllhaupt, B, Vizcaychipi, KA, Budke, C and Vuitton, DA (2017) The echinococcoses: diagnosis, clinical management and burden of disease. In Thompson, RCA, Deplazes, P and Lymbery, AJ (eds), Advances in Parasitology, vol. 96. London, United Kingdom: Echinococcus and Echinococcosis, Part B. Elsevier, Academic Press, pp. 259369.Google Scholar
Liu, C, Zhang, H, Jiang, B, Yao, J, Tao, Y, Xue, J and Wen, A (2012) Enhanced bioavailability and cysticidal effect of three mebendazole-oil preparations in mice infected with secondary cysts of Echinococcus granulosus. Parasitology Research 111, 12051211.CrossRefGoogle ScholarPubMed
Lv, H, Jiang, Y, Liao, M, Sun, H, Zhang, S and Peng, X (2013) In vitro And in vivo treatments of Echinococcus granulosus with Huaier aqueous extract and albendazole liposome. Parasitology Research 112, 193198.CrossRefGoogle ScholarPubMed
Marriner, E, Morris, DL, Dickson, B and Bogan, JA (1986) Pharmacokinetics of albendazole in man. European Journal of Clinical Pharmacology 30, 705708.CrossRefGoogle ScholarPubMed
Mingjie, W, Shuhua, X, Junjie, C, Bin, L, Cheng, F, Weixia, S and Hotez, P (2002) Albendazole-soybean oil emulsion for the treatment of human cystic echinococcosis: evaluation of bioavailability and bioequivalence. Acta Tropica 83, 177181.CrossRefGoogle ScholarPubMed
Morris, DL and Taylor, DH (1988) Optimal timing of post-operative albendazole prophylaxis in E. granulosus. Annals of Tropical Medicine and Parasitology 82, 6566.CrossRefGoogle ScholarPubMed
National Research Council US (2011) Guide for the Care and use of Laboratory Animals, 8th Edn. Washington, DC, USA: National Academies Press.Google Scholar
Paredes, AJ, Litterio, N, Dib, A, Allemandi, DA, Lanusse, C, Sánchez Bruni, S and Palma, SD (2018) A nanocrystal-based formulation improves the pharmacokinetic performance and therapeutic response of albendazole in dogs. Journal of Pharmacy and Pharmacology 70, 5158.CrossRefGoogle ScholarPubMed
Pensel, PE, Castro, S, Allemandi, D, Sánchez Bruni, S, Palma, SD and Elissondo, MC (2014) Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis. Veterinary Parasitology 203, 8086.CrossRefGoogle ScholarPubMed
Pensel, PE, Ullio Gamboa, G, Fabbri, J, Ceballos, L, Sanchez Bruni, S, Alvarez, LI, Allemandi, D, Benoit, JP, Palma, SD and Elissondo, MC (2015) Cystic echinococcosis therapy: albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Tropica 152, 185194.CrossRefGoogle ScholarPubMed
Pensel, PE, Paredes, A, Albani, CM, Allemandi, D, Sanchez Bruni, S, Palma, SD and Elissondo, MC (2018) Albendazole nanocrystals in experimental alveolar echinococcosis: enhanced chemoprophylactic and clinical efficacy in infected mice. Veterinary Parasitology 251, 7884.CrossRefGoogle ScholarPubMed
Reuter, S, Buck, A, Manfras, B, Kratzer, W, Seitz, HM, Darge, K, Reske, SN and Kern, P (2004) Structured treatment interruption in patients with alveolar echinococcosis. Hepatology 39, 509517.CrossRefGoogle ScholarPubMed
Rowe, R, Sheskey, P and Owen, S (2005) Handbook of Pharmaceutical Excipients, 5th Edn. Washington, USA: Pharmaceutical, London UK and American Pharmaceutical Association.Google Scholar
Shuhua, X, Jiqing, Y, Mingjie, W, Pieying, J, Fanghua, G, Junjie, C, Wei, J and Hotez, P (2002) Augmented bioavailability and cysticidal activity of albendazole reformulated in soybean emulsion in mice infected with Echinococcus granulosus Or Echinococcus multilocularis. Acta Tropica 82, 7784.CrossRefGoogle ScholarPubMed
Simonazzi, A, Cid, AG, Paredes, AJ, Schofs, L, Gonzo, EE, Palma, SD and Bermúdez, JM (2018) Development and in Vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Therapeutic Delivery 9, 623638.CrossRefGoogle ScholarPubMed
Spiliotis, M and Brehm, K (2009) Axenic in vitro cultivation of Echinococcus multilocularis metacestode vesicles and the generation of primary cell cultures. In Rupp S and Sohn K (eds), Host-Pathogen Interactions. Methods in Molecular Biology 470, 245262.CrossRefGoogle ScholarPubMed
Thompson, DO (1997) Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Critical Reviews in Therapeutic Drug Carrier Systems 14, 104.CrossRefGoogle ScholarPubMed
Ullio Gamboa, G, Pensel, PE, Elissondo, MC, Sanchez Bruni, S, Benoit, JP, Palma, SD and Allemandi, DA (2019) Albendazole-lipid nanocapsules: optimization, characterization and chemoprophylactic efficacy in mice infected with Echinococcus granulosus. Experimental Parasitology 198, 7986.CrossRefGoogle ScholarPubMed
Vasconcelos, T, Sarmiento, B and Costa, P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today 12, 10681075.CrossRefGoogle ScholarPubMed
Vo, CLN, Park, C and Lee, BJ (2013) Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics 85, 799813.CrossRefGoogle ScholarPubMed
Wen, H, Vuitton, L, Tuxun, T, Li, J, Vuitton, DA, Zhang, W and McManus, DP (2019) Echinococcosis: advances in the 21st century. Clinical Microbiology Reviews 32, e00075–18.CrossRefGoogle ScholarPubMed