Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T14:52:47.843Z Has data issue: false hasContentIssue false

14-3-3- and II/3-10-gene expression as molecular markers to address viability and growth activity of Echinococcus multilocularis metacestodes

Published online by Cambridge University Press:  12 September 2005

J. MATSUMOTO
Affiliation:
Institute of Parasitology, University of Bern, Länggass-Strasse 122, CH-3001 Bern, Switzerland Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
N. MÜLLER
Affiliation:
Institute of Parasitology, University of Bern, Länggass-Strasse 122, CH-3001 Bern, Switzerland
A. HEMPHILL
Affiliation:
Institute of Parasitology, University of Bern, Länggass-Strasse 122, CH-3001 Bern, Switzerland
Y. OKU
Affiliation:
Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
M. KAMIYA
Affiliation:
Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan Present address: Laboratory of Environmental Zoology, Department of Biosphere and Environmental Sciences, Faculty of Environment Systems, Rakuno Gakuen University, Bunkyodai-Midorimachi, Ebetsu 069-8501, Japan.
B. GOTTSTEIN
Affiliation:
Institute of Parasitology, University of Bern, Länggass-Strasse 122, CH-3001 Bern, Switzerland

Abstract

The present study aimed to search for and characterize parasite molecules, whose expression levels correlate with the viability and growth activity of Echinococcus multilocularis metacestodes. We focused on the expression profiles of 2 parasite-derived genes, 14-3-3 and II/3-10, as putative molecular markers for viability and growth activity of the larval parasite. In experiments in vivo, gene expression levels of 14-3-3 and II/3-10 were relatively quantified by real-time reverse transcription-PCR using a housekeeping gene, beta-actin, as a reference reaction. All three reactions were compared with growth activity of the parasite developing in permissive nu/nu and in non-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels found after 8 days of treatment, which correlated with the kinetics of a housekeeping gene, beta-actin. The conclusion is that 14-3-3, combined with II/3-10, exhibits good potential as a molecular marker to assess viability and growth activity of the parasite.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, A. ( 1996). 14-3-3 and its possible role in co-ordinating multiple signaling pathways. Trends in Cell Biology 6, 341347.CrossRefGoogle Scholar
Ammann, R. W., Renner, E. C., Gottstein, B., Grimm, F., Eckert, J., Renner, E. L. AND SWISS ECHINOCOCCOSIS STUDY GROUP ( 2004). Immunosurveillance of alveolar echinococcosis by specific humoral and cellular immune tests: prospective long-term analysis of the Swiss chemotherapy trial (1976–2001). Journal of Hepatology 41, 551559.CrossRefGoogle Scholar
Brehm, K., Jensen, K., Frosch, P. and Frosch, M. ( 1999). Characterization of the genomic locus expressing the ERM-like protein of Echinococcus multilocularis. Molecular and Biochemical Parasitology 100, 147152.CrossRefGoogle Scholar
Bretscher, A., Chambers, D., Nguyen, R. and Reczek, D. ( 2000). ERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annual Review of Cell and Developmental Biology 16, 113143.CrossRefGoogle Scholar
Bretscher, A., Edwards, K. and Fehon, R. G. ( 2002). ERM proteins and merlin: integrators at the cell cortex. Nature Reviews in Cell Biology 3, 586599.CrossRefGoogle Scholar
Dai, W. J. and Gottstein, B. ( 1999). Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology 97, 107116.CrossRefGoogle Scholar
Dai, W. J., Waldvogel, A., Siles-Lucas, M. and Gottstein, B. ( 2004). Echinococcus multilocularis proliferation in mice and respective parasite 14-3-3 gene expression is mainly controlled by an alpha beta+ CD4+ T-cell-mediated immune response. Immunology 112, 481488.Google Scholar
Eckert, J. and Jacquier, P. ( 1991). Viability testing of Echinococcus multilocularis metacestodes from untreated and treated patients. In Archivos de la Hidatidosis 1[squf ] ( ed. De Rosa, F.), pp. 863867. Libbey and Company Ltd., London.
Emery, I., Bories, C., Liance, M. and Houin, R. ( 1995). In vitro quantitative assessment of Echinococcus multilocularis metacestode viability after in vivo and in vitro maintenance. International Journal for Parasitology 25, 275278.CrossRefGoogle Scholar
Felleisen, R. and Gottstein, B. ( 1993). Echinococcus multilocularis: molecular and immunological characterization of diagnostic antigen II/3-10. Parasitology 107, 335342.CrossRefGoogle Scholar
Freed, E., Symons, M., Macdonald, S. G., Mccormick, F. and Ruggieri, R. ( 1994). Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265, 17131716.CrossRefGoogle Scholar
Frosch, P. M., Frosch, M., Pfister, T., Schaad, V. and Bitter-Suermann, D. ( 1991). Cloning and characterization an immunodominant major surface antigen of Echinococcus multilocularis. Molecular and Biochemical Parasitology 48, 121130.CrossRefGoogle Scholar
Fu, H., Subramanian, R. R. and Masters, S. C. ( 2000). 14-3-3 proteins: structure, function, and regulation. Annual Review in Pharmacology and Toxicology 40, 617647.CrossRefGoogle Scholar
Gautreau, A., Louvard, D. and Arpin, M. ( 2002). ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signalling. Current Opinions in Cell Biology 14, 104109.CrossRefGoogle Scholar
Gottstein, B. ( 1992). Echinococcus multilocularis infection: immunology and immunodiagnosis. Advances in Parasitology 31, 321380.CrossRefGoogle Scholar
Gottstein, B., Deplazes, P. and Aubert, M. ( 1992). Echinococcus multilocularis: immunological study on the “Em2-positive” laminated layer during in vitro and in vivo post-oncospheral and larval development. Parasitology Research 78, 291297.CrossRefGoogle Scholar
Gottstein, B. and Hemphill, A. ( 1997). Immunopathology of echinococcosis. Chemical Immunology 66, 177208.CrossRefGoogle Scholar
Gottstein, B., Saucy, F., Deplazes, P., Reichen, J., Demierre, G., Busato, A., Zuercher, C. and Pugin, P. ( 2001). Is high prevalence of Echinococcus multilocularis in wild and domestic animals associated with disease incidence in humans? Emerging Infectious Diseases 7, 408412.Google Scholar
Hemmings, L. and Mcmanus, D. P. ( 1991). The diagnostic value and molecular characterization of an Echinococcus multilocularis antigen gene clone. Molecular and Biochemical Parasitology 44, 5361.CrossRefGoogle Scholar
Hemphill, A. and Croft, S. L. ( 1997). Electron microscopy in parasitology. In Analytical Parasitology ( ed. Rogan, M.), pp. 227268. Springer, Heidelberg.CrossRef
Hemphill, A. and Gottstein, B. ( 1995). Immunological and morphological studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestode. Parasitology Research 81, 605614.CrossRefGoogle Scholar
Hülsmeier, A. J., Gehrig, P. M., Geyer, R., Sack, R., Gottstein, B., Deplazes, P. and Köhler, P. ( 2002). A major Echinococcus multilocularis antigen is a mucin-type glycoprotein. Journal of Biological Chemistry 277, 57425748.CrossRefGoogle Scholar
Ito, A., Wang, X. G. and Liu, Y. H. ( 1993). Differential serodiagnosis of alveolar and cystic hydatid disease in the People's Republic of China. Amercican Journal of Tropical Medicine and Hygiene 49, 208213.CrossRefGoogle Scholar
Ito, A. and Craig, P. S. ( 2003). Immunodiagnostic and molecular approaches for the detection of taeniid cestode infections. Trends in Parasitology 19, 377381.CrossRefGoogle Scholar
Kern, P., Frosch, P., Helbig, M., Wechsler, J. G., Usadel, S., Beckh, K., Kunz, R., Lucius, R. and Frosch, M. ( 1995). Diagnosis of Echinococcus multilocularis infection by reverse-transcription polymerase chain reaction. Gastroenterology 109, 596600.CrossRefGoogle Scholar
Liance, M., Bresson-Hadni, S., Vuitton, D. A., Lenys, D., Carbillet, J. P. and Houin, R. ( 1992). Effects of cyclosporine A on the course of murine alveolar echinococcosis and specific cellular and humoral immune responses against Echinococcus multilocularis. International Journal for Parasitology 22, 2328.CrossRefGoogle Scholar
Louvet-Vallée, S. ( 2000). ERM proteins: from cellular architecture to cell signalling. Biology of the Cell, 92, 305316.CrossRefGoogle Scholar
Matsumoto, J., Yagi, K., Nonaka, N., Oku, Y. and Kamiya, M. ( 1998). Time-course of antibody response in mice against oral infection with eggs of Echinococcus multilocularis. Parasitology 116, 463469.CrossRefGoogle Scholar
McGonigle, S., Loschiavo, M. and Pearce, E. J. ( 2002). 14-3-3 proteins in Schistosoma mansoni; identification of a second epsilon isoform. International Journal for Parasitology 32, 685693.CrossRefGoogle Scholar
Müller, N., Gottstein, B., Vogel, M., Flury, K. and Seebek, T. ( 1989). Application of a recombinant Echinococcus multilocularis antigen in an enzyme-linked immunosorbent assay for immunodiagnosis of human alveolar echinococcosis. Molecular and Biochemical Parasitology 36, 151160.CrossRefGoogle Scholar
Nakanishi, K., Hashizume, S., Kato, M., Honjoh, T., Setoguchi, Y. and Yasumoto, K. ( 1997). Elevated expression levels of the 14-3-3 family of proteins in lung cancer tissues. Human Antibodies 8, 189194.CrossRefGoogle Scholar
Naora, H. and Naora, H. ( 1995). Differential expression patterns of beta-actin mRNA in cells undergoing apoptosis. Biochemical and Biophysical Research Communications 211, 491496.CrossRefGoogle Scholar
Playford, M. C. and Kamiya, M. ( 1992). Immune response to Echinococcus multilocularis infection in the mouse model. Japanese Journal of Veterinary Research 40, 113130.Google Scholar
Playford, M., Ooi, H. K., Oku, Y. and Kamiya, M. ( 1992). Secondary Echinococcus multilocularis infection in severe combined immunodeficient (scid) mice: biphasic growth of the larval cyst mass. International Journal for Parasitology 22, 975982.CrossRefGoogle Scholar
Rakha, N. K., Dixon, J. B., Carter, S. D., Craig, P. S., Jenkins, P. and Folkard, S. ( 1991). Echinococcus multilocularis antigens modify accessory cell function of macrophages. Immunology 74, 652656.Google Scholar
Reuter, S., Schirrmeister, H., Kratzer, W., Dreweck, C., Reske, S. N. and Kern, P. ( 1999). Pericystic metabolic activity in alveolar echinococcosis: assessment and follow-up by positron emission tomography. Clinical Infectious Diseases 29, 11571163.CrossRefGoogle Scholar
Richards, K. S., Morris, D. L., Daniels, D. and Riley, E. M. ( 1998). Echinnococcus granulosus: the effects of praziquantel, in vivo and in vitro, on the ultrastructure of equine strain murine cysts. Parasitology 96, 323336.Google Scholar
Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., Smerdon, S. J., Gamblin, S. J. and Yaffe, M. B. ( 1999). Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Molecular Cell 4, 153166.CrossRefGoogle Scholar
Sailer, M., Soelder, B., Allerberger, F., Zaknun, D., Feichtinger, H. and Gottstein, B. ( 1997). Alveolar echinococcosis of the liver in a six-year-old girl with acquired immunodeficiency syndrome. Journal of Pediatrics 130, 320323.CrossRefGoogle Scholar
Sako, Y., Nakao, M., Nakaya, K., Yamasaki, H., Gottstein, B., Lightowers, M. W., Schantz, P. M. and Ito, A. ( 2002). Alveolar echinococcosis: characterization of diagnostic antigen Em18 and serological evaluation of recombinant Em18. Journal of Clinical Microbiology 40, 27602765.CrossRefGoogle Scholar
Siles-Lucas, M., Felleisen, R. S., Hemphill, A., Wilson, W. and Gottstein, B. ( 1998). Stage-specific expression of the 14-3-3 gene in Echinococcus multilocularis. Molecular and Biochemical Parasitology 91, 281293.CrossRefGoogle Scholar
Siles-Lucas, M. and Gottstein, B. ( 2001). Molecular tools for the diagnosis of cystic and alveolar echinoccosis. Tropical Medicine and International Health 6, 463475.CrossRefGoogle Scholar
Siles-Lucas, M. and Gottstein, B. ( 2003). 14-3-3 protein: a key molecule in parasites as in other organisms. Trends in Parasitology 19, 575581.CrossRefGoogle Scholar
Siles-Lucas, M., Nunes, C. P. and Zaha, A. ( 2001). Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes. Parasitology 122, 281287.CrossRefGoogle Scholar
Spiliotis, M., Tappe, D., Bruckner, S., Mosch, H. U. and Brehm, K. ( 2005). Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm Echinococcus multilocularis. Molecular and Biochemical Parasitology 139, 225237.CrossRefGoogle Scholar
Stettler, M., Fink, R., Walker, M., Gottstein, B., Geary, T. G., Rossignol, J. F. and Hemphill, A. ( 2003). In vitro parasiticidal effect of Nitazoxanide against Echinococcus multilocularis metacestodes. Antimicrobial Agents and Chemotherapy 47, 467474.CrossRefGoogle Scholar
Stettler, M., Rossignol, J. F., Fing, R., Walker, M., Gottstein, B., Merli, M., Theurillat, R., Thormann, W., Dricot, E., Segers, R. and Hemphill, A. ( 2004). Secondary and primarymurine alveolar echinococcosis: combined albendazole/nitazoxanide chemotherapy exhibits profound anti-parasitic activity. International Journal for Parasitology 34, 615624.CrossRefGoogle Scholar
van Hemert, M. J., Steensma, H. Y. and van Heusden, G. P. ( 2001). 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23, 936946.CrossRefGoogle Scholar
Vogel, M., Gottstein, B., Müller, N. and Seebek, T. ( 1988). Production of a recombinant antigen of Echinococcus multilocularis with high imunodiagnostic sensitivity and specificity. Molecular and Biochemical Parasitology 31, 117125.CrossRefGoogle Scholar
Wilson, J. F., Rausch, R. L., Mcmahon, B. J. and Schantz, P. M. ( 1992). Parasiticidal effect of chemotherapy in alveolar hydatid disease: review of experience with mebendazole and albendazole in Alaskan Eskimos. Clinical Infectious Diseases 15, 234249.CrossRefGoogle Scholar
Zingg, W., Renner-Schneiter, E. C., Pauli-Magnus, C., Renner, E. L., Van Overbeck, J., Schläpfer, E., Weber, M., Weber, R., Opravil, M., Gottstein, B., Speck, R. F. AND THE SWISS HIV COHORT STUDY ( 2004). Alveolar echinococcosis of the liver in an adult with human immunodeficiency virus type-1 infection. Infection 32, 299302.CrossRefGoogle Scholar