Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:58:31.175Z Has data issue: false hasContentIssue false

Why Dinosaurs Were Not Mammals and Vice Versa

Published online by Cambridge University Press:  26 July 2017

Nicholas Hotton III*
Affiliation:
Department of Paleobiology, Smithsonian Institution, Washington, D. C. 20560
Get access

Extract

Everybody knows what dinosaurs are- or were. They were land animals which appeared first in the late Triassic, about 210 million years ago, and became extinct at the end of the Cretaceous, about 65 million years ago. They were extremely successful, being the most conspicuous and diverse terrestrial vertebrates for about 145 million years. The most impressive feature of dinosaurs is their large size, and though much is made of adult dinosaurs no bigger than a chicken, the fact remains that the smallest of these were larger than more than 70% of living mammals (Hotton, 1980).

Type
Thinking About Dinosaurs: Past, Present, and Future
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, R. T. 1971. Dinosaur physiology and the origin of mammals. Evolution, 25(4):636658.Google Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman and Company, New York, 698 p.Google Scholar
Charig, A. J. 1972. The evolution of the archosaur pelvis and hindlimbs: an explanation in functional terms, p. 121135. In Joysey, K. A. and Kemp, T. S. (eds.), Studies in Vertebrate Evolution. Oliver and Boyd, Edinburgh.Google Scholar
Coe, M. J., Dilcher, D. L., Farlow, J. O., Jarzen, D. M., and Russell, D. A. 1987. Dinosaurs and land plants, p. 225258. In Friis, E. M., Chaloner, W. G., and Crane, P. R. (eds.), Origins of Angiosperms and their Biological Consequences. Cambridge University Press, Cambridge.Google Scholar
Dodson, P. 1990. Sauropod paleoecology, p. 402407. In Weishampel, D. B., Dodson, P., and Osmolska, H. (eds.), The Dinosauria. University of California Press, Berkeley, California.Google Scholar
Doyle, J. A., and Hickey, L. J. 1976. Pollen and leaves from the Mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution, p. 139206. In Beck, C. B. (ed.), Origin and Early Evolution of Angiosperms. Columbia University Press, New York.Google Scholar
Duchamp, C. 1991. Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle. American Journal of Physiology, 26(6):R1438R1445.Google Scholar
Duchamp, C. 1991. Nonshivering thermogenesis in king penguin chicks. II. Effect of fasting. American Journal of Physiology, 26(6):R1446R1454.Google Scholar
Gilmour, D. 1965. The Metabolism of Insects. Oliver and Boyd, Edinburgh, p. 195.Google Scholar
Gordon, M. S. 1972. Animal Physiology: Principles and Adaptations, 2nd Ed. Macmillan, New York, p. 699.Google Scholar
Greene, H. W. 1982. Dietary and phenotypic diversity in lizards: why are some organisms specialized?, p. 107128. In Mossakowski, D. and Roth, G., (eds.), Environmental Adaptation and Evolution. Gustav Fischer, Stuttgart.Google Scholar
Haubold, H., and Schaumberg, G. 1985. Die Fossilien des Kupferschiefers. Neue Brehm-Bucherei 333:1223. A. Zeimsen, Wittenberg Lutherstadt.Google Scholar
Heinrich, B., and Esch, H. 1994. Thermoregulation in bees. American Scientist, 82(2): 164170.Google Scholar
Hotton, N. III. 1963. Dinosaurs: the Million-Century Story of the Giant Reptiles. Pyramid Publications, New York, p. 192.Google Scholar
Hotton, N. III. 1980. An alternative to dinosaur endothermy: the happy wanderers, p. 311350. In Thomas, R. D. K. and Olson, E. C. (eds.), A Cold Look at the Warm-Blooded Dinosaurs, AAAS Selected Symposium Series 28. Westview Press, Inc., Boulder, Colorado.Google Scholar
Hotton, N. III. 1986. Dicynodonts and their role as primary consumers, p. 7182. In Hotton, N. III, MacLean, P. D., Roth, J. J., and Roth, E. C. (eds.), The Ecology and Biology of Mammal-like Reptiles, Proceedings of a short conference sponsored by National Institute of Mental Health and Smithsonian Institution, 1981. Smithsonian Institution Press, Washington, D. C. Google Scholar
Krausel, R. 1922. Die Nahrung von Trachodon . Palaeontologisches Zeitschrift, 4:80.Google Scholar
Munk, W., and Sues, H.-D. 1993. Gut contents of Parasaurus (Pareiasauria) and Protorosaurus (Archosauromorpha) from the Kupferschiefer (Upper Permian) of Hessen, Germany. Paleaontgisches Zeitschrift, 67(1/2):169176.Google Scholar
Ostrom, J. H. 1961. Cranial morphology of the hadrosaurian dinosaurs of North America. Bulletin of the American Museum of Natural History, 122(2):39186.Google Scholar
Ostrom, J. H. 1966. Functional morphology and evolution of the ceratopsian dinosaurs. Evolution, 20(3):290308.Google Scholar
Romer, A. S., and Price, L. I. 1940. Review of the Pelycosauria. Geological Society of America Special Papers, 21:1568.Google Scholar
Schweitzer, H.-J. 1962. Die Makroflora des niederrheinischen Zechsteins. Fortschritte in der Geologie von Rheinland und Westfalen, Krefeld, 6:331376.Google Scholar
Schweitzer, H.-J. 1968. Die Flora des Oberen Perms in Mitteleuropa. Naturwissenshaftliche Rundschau, Stuttgart, 21:93102.Google Scholar
Watson, D. M. S. 1954. On Bolosaurus and the origin and classification of reptiles. Bulletin of the Museum of Comparative Zoology, Harvard, 111(9):299499.Google Scholar
Wiegelt, J. 1930. Ueber die vermutlich Nahrung von Protorosaurus und ueber einem koerperlich erhaltenen Fruchtstand von Archaeopodocarpus germanicus aut. Nova Acta Leopoldina, Halle/S., 6:269280.Google Scholar