Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T18:15:20.416Z Has data issue: false hasContentIssue false

The Value of Fossil Collections

Published online by Cambridge University Press:  26 July 2017

Warren D. Allmon
Affiliation:
Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, NY 14850
Terry P. Poulton
Affiliation:
Geological Survey of Canada, 3303-33 St., NW, Calgary, Alberta, Canada T2L 2A7
Get access

Extract

“VALUE,” WROTE John Ruskin (1862), “is the life-giving power of anything; cost, the quantity of labor required to produce it; price, the quantity of labor which its possessor will take in exchange for it”. These distinctions see obvious enough. Yet in the bustle of everyday modern life in a highly materialistic society, it seems increasingly difficult to separate “value” from “cost” and “price”. How do we — as individuals, groups, or a society — assign a value to something? What, in fact, do we value? A glance at television or a popular magazine offers some clues. We value things economic, those associated with “making a living”, with solving the everyday problems of making one's way in the world. We value things that enhance our position or status in society, or that make our lives easier or give us pleasure or diversion. We value things that make our lives meaningful. We do not tend to necessarily value what's good for us, at least not simply because someone tells us it is.

Type
Research Article
Copyright
Copyright © 2000 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M., and Woodward, F.I. 1992. The past as a key to the future: the use of palaeoenvironmental understanding to predict the effects of man on the biosphere, p. 257314. In Woodward, F.I. (ed.), Global climate change. The ecological consequences. Academic Press, New York.Google Scholar
Ager, D. 1963. Principles of paleoecology. McGraw-Hill, New York, 371 p.Google Scholar
Allmon, W.D. 1987. Mass extinctions past and present. Journal of Geological Education, 35:197202.Google Scholar
Allmon, W.D. 1993. The Dickey Flatt test. Washington Post, May 1.Google Scholar
Allmon, W.D. 1994. The value of natural history collections. Curator, 37(2): 8389.Google Scholar
Allmon, W.D. 1997a. Collections in paleontology, p. 155159. In Lane, H.R., Lipps, J., Steininger, F.F., and Ziegler, W. (eds.), Paleontology in the 21st Century Workshop Abstract Volume, Kleine Senckenbergreihe No. 25.Google Scholar
Allmon, W.D. 1997b. Mass extinction, biodiversity, and the future of paleontology, p. 513517. In Wolberg, D.L. and Stump, E. (eds.), Dinofest International, Proceedings of the Symposium. Academy of Natural Sciences of Philadelphia.Google Scholar
Allmon, W.D., and Morris, P.J. 1995. Mass extinction: so what? An agenda for paleontology into the next century. Geotimes, 40(3):4.Google Scholar
Allmon, W.D., and Ross, R.M. 2000. An art exhibit on dinosaurs and the nature of science. Journal of Geoscience Education (in press).Google Scholar
Altangerel, P., Norell, M.A., Chiappe, L.M., and Clark, J. M. 1993. Flightless bird from the Cretaceous of Mongolia. Nature, 362: 623626 Google Scholar
AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE. 1993. Benchmarks for science literacy. Oxford University Press, New York, 413 p.Google Scholar
Austin, J.J., Ross, A.J., Smith, A.B., Fortey, R.A., and Thomas, R.H. 1997. Problems of reproducibility — does geologically ancient DNA survive in amber-preserved insects? Proceedings of the Royal Society of London B, 264: 467474 Google Scholar
Barron, E.J. 1995. Tropical climate stability and implications for the distribution of life, p. 108117. In Knoll, A.H. and Stanley, S.M. (eds.), Effects of past global change on life. National Academy Press, Washington, DC.Google Scholar
Baum, G.R., and Vail, P.R. 1988. Sequence stratigraphic concepts applied to Paleogene outcrops, Gulf and Atlantic basins. In Sea-level changes: an integrated approach. SEPM Special Publication 42: 309–328 Google Scholar
Bengtson, S. (ed.) 1994. Early life on Earth. Columbia University Press, New York, 630 p.Google Scholar
Bertrand, R., and Heroux, Y. 1987. Chitinozoan, graptolite, and scolecodont reflectance as an alternative to vitrinite and pyrobitumen reflectance in Ordovician and Silurian strata, Anticosti Island, Quebec, Canada. American Association of Petroleum Geologists Bulletin, 71:951957.Google Scholar
Blatt, H., Berry, W.B.N., and BrandE, S. 1991. Principles of stratigraphic analysis. Blackwell Scientific Publications, Boston, 512 p.Google Scholar
Bock, G.R., and Goode, J.A. 1996. Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester, 334 p.Google Scholar
Boucot, A.J. 1981. Principles of benthic marine paleoecology. Academic Press, New York, 463 p.Google Scholar
Brenchley, P.J. (ed.) 1984. Fossils and climate. Wiley, Chichester, 352 p.Google Scholar
Brett, C.E., and Baird, G.C. (eds.) 1997. Paleontological events. Columbia University Press, New York, 604 p.Google Scholar
Briggs, D.E.G., Clarkson, E.N.K., and Aldridge, R.J. 1983. The conodont animal. Lethaia, 16(1):114.Google Scholar
Briggs, D.E.G., Fortey, R.A., and Wills, M.A. 1993. How big was the Cambrian evolutionary explosion? A taxonomic and morphological comparison of Cambrian and Recent arthropods, p. 3344. In Lees, D.R. and Edwards, D. (eds.), Evolutionary patterns and processes. Linnaean Society of London/Academic Press, London.Google Scholar
Broad, W.J. 1997. Scientists widen the hunt for alien life. New York Times, May 6.Google Scholar
Callomon, J.H. 1984a. A review of the biostratigraphy of the post-Lower Bajocian Jurassic ammonites of western and northern North America, p. 143174. In Westermann, G.E.G. (eds.), Jurassic-Cretaceous biochronology and paleogeography of North America. Geological Association of Canada Special Paper 27.Google Scholar
Callomon, J.H. 1984b. The measurement of geological time. Proceedings of the Royal Institution of Great Britain, 56: 6599 Google Scholar
Cano, R.J., and Borucki, M.K. 1995. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268: 1060.Google Scholar
Cano, R.J., Poinar, H., and Poinar, G.O. Jr. 1992a. Isolation and partial characterization of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Medical Science Research, 20: 249251 Google Scholar
Cano, R.J., Poinar, H. N., Roubki, D.W., and Poinar, G.O. Jr. 1992b. Enzymatic amplification and nucleotide sequencing of portions of the 18s rRNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25-40 million year old Dominican amber. Medical Science Research, 10: 619622 Google Scholar
Cano, R.J., Poinar, H.N., Pieniazek, N.J., Acra, A., and Poinar, G.O. Jr., 1993. Amplification and sequencing of DNA from a 120-135 million year old weevil. Nature, 363: 536538 Google Scholar
Chaloner, W.G., and Hallam, A. (eds.) 1989. Evolution and extinction. Cambridge University Press, Cambridge, 488 p.Google Scholar
Cheetham, A.H., 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology, 12: 190202 Google Scholar
Conway Morris, S. 1998. The crucible of creation. The Burgess Shale and the rise of animals. Oxford University Press, Oxford, 242 p.Google Scholar
Cooley, G.P., Harrington, M.B., and Lawrence, L.M. 1993. Analysis and recommendations for scientific computing and collections information management of free-standing museums of natural history and botanic gardens, 2 vols. MTR 93W0000109. Mitre, Inc., McLean, VA.Google Scholar
Cope, J.C.W. 1993. High resolution biostratigraphy, p. 257265. In Hailwood, E.A. and Kidd, R.B. (eds.), High resolution stratigraphy. Geological Society Special Publication 70.Google Scholar
Cope, J.C.W., and Skelton, P.W. (eds.) 1985. Evolutionary case histories from the fossil record. Palaeontological Association Special Paper No. 33, 202 p.Google Scholar
Cowen, R. 1997. Meteorite still holds inklings of life. Science News, 151: 190.Google Scholar
Cronin, T.M. 1991. Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes. Quaternary Science Reviews, 10: 175188 Google Scholar
Cronin, T.M. 1999. Principles of Paleoclimatology. Columbia University Press, New York, 560 p.Google Scholar
Cronin, T.M., and Schneider, C.E. 1990. Climatic influences on species: evidence from the fossil record. Trends in Ecology and Evolution, 5(9): 275279.Google Scholar
Crowley, T.J., and North, G.R. 1991. Paleoclimatology. Oxford University Press, Oxford, 339 p.Google Scholar
Demenocal, P. 1995. Plio-Pleistocene African climate. Science, 270: 5359 Google Scholar
Demenocal, P. 1997. African climate and human evolution: the ODP link. JOI/USSAC Newsletter, 10(1): 14.Google Scholar
Desalle, R. 1994. Implications of ancient DNA for phylogenetic studies. Experientia, 50: 543550 Google Scholar
Desalle, R., and Lindley, D. 1997. The science of Jurassic Park and the Lost World. Basic Books, New York, 194 p.Google Scholar
Desalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D. 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 257: 19331936 Google Scholar
Desalle, R., Barcia, M., and Wray, C. 1993. PCR jumping in clones of 30 million year old DNA fragments from amber preserved termites (Mastodermes electrodominicus). Experientia, 49: 906909 Google Scholar
D'Hondt, S., and Arthur, M.A. 1996. Late Cretaceous oceans and the cool tropic paradox. Science, 271: 18381841 Google Scholar
Dingus, L. 1996. Next of kin. Great fossils at the American Museum of Natural History. Rizzoli, New York, 160 p.Google Scholar
Diester-Haass, L., and Zahn, R. 1996. Eocene-Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology, 24(2): 163166.Google Scholar
Dodd, J.R., and Stanton, R.J. Jr. 1990. Paleoecology. Concepts and applications. Wiley, New York, 502 p.Google Scholar
Ekdale, A.A., Bromley, R.G., and Pemberton, S.G. 1984. Ichnology. The use of trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, 316 p.CrossRefGoogle Scholar
Eldredge, N. 1991. The miner's canary. Prentice Hall, Englewood Cliffs, NJ (reprinted 1994 by Princeton University Press, Princeton, NJ, 246 p.) Google Scholar
Eldredge, N. 1995a. Dominion. Can nature and culture co-exist? Macrae/Henry Holt, New York, 190 p.Google Scholar
Eldredge, N. 1995b. Reinventing Darwin. The great debate at the high table of evolutionary theory. Wiley, NY, 244 p.Google Scholar
Erwin, D.H. 1993. The great Paleozoic crisis. Life and death in the Permian. Columbia University Press, New York, 327 p.Google Scholar
Erwin, D.H., and Anstey, R.L. (eds.) 1996. New approaches to speciation in the fossil record. Columbia University Press, New York, 342 p.Google Scholar
Farmer, J. 1995. Mars exopaleontology. Palaios, 10(3): 197198.Google Scholar
Feduccia, A. 1980. The age of birds. Harvard University Press, Cambridge, MA, 196 p.Google Scholar
Feibel, C.S. 1997. Debating the environmental factors in hominid evolution. GSA Today, 7(3): 17.Google Scholar
Fischer, A.G., and Arthur, M. 1977. Secular variations in the pelagic realm, p. 1850. In Cook, H.E. and Enos, P. (eds.), Deep water carbonate environments. SEPM Special Paper 25.Google Scholar
Flessa, K.W. 1990. The “facts” of mass extinction, p. 18. In Sharpton, V.L. and Ward, P.D. (eds.), Global catastrophes in Earth history. Geological Society of America Special Paper 247.Google Scholar
Frakes, L.A. 1979. Climates throughout geologic time. Elsevier, Amsterdam, 310 p.Google Scholar
Frakes, L.A., Francis, J.E., and Syktus, J.I. 1992. Climate modes of the Phanerozoic. Cambridge University Press, Cambridge, 274 p.Google Scholar
Geldsetzer, H.H.J., and Nowlan, S.S. (eds.) 1996. Event markers in Earth history. Special Issue. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Goldsmith, D., 1997. The hunt for life on Mars. Penguin Books, New York, 256 p.Google Scholar
Golenberg, E.M., Giannassi, D.E., Clegg, M.T., Smiley, C.J., Durbin, M., Henderson, D., and Zurawski, G. 1990. Chloroplast DNA from a Miocene Magnolia species. Nature, 344: 656658 Google Scholar
Goodarzi, F., and Higgins, A.C. 1987. Optical properties of scolecodonts and their use as indicators of thermal maturity. Marine and Petroleum Geology, 4:353360.Google Scholar
Goodarzi, F., and Norford, B.S. 1985. Graptolites as indicators of the temperature histories of rocks. Journal of the Geological Society of London, 142:10891099.Google Scholar
Goodarzi, F., and Norford, B.S. Optical properties of graptolite epiderm - a review. Dansk Geologisk Forening, 35:141148.Google Scholar
Gould, S.J., 1989. Wonderful life. The Burgess Shale and the nature of history. W.W Norton, New York, 347 p.Google Scholar
Gould, S.J., 1991. The dinosaur rip-off, p. 94108. In Bully for Brontosaurus. W.W. Norton, New York.Google Scholar
Graham, R.W. 1992. Late Pleistocene faunal changes as a guide to understanding effects of greenhouse warming on the mammalian fauna of North America, p. 7690. In Peters, R.L. and Lovejoy, T.E. (eds.), Global warming and biodiversity. Yale University Press, New Haven.Google Scholar
Graham, R.W., and Grimm, E.C. 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecology and Evolution, 5(9): 289293.Google Scholar
Grimaldi, D. 1993. The care and study of fossiliferous amber. Curator, 36: 3149 Google Scholar
Hallam, A. 1975. Jurassic environments. Cambridge University Press, Cambridge, 269 p.Google Scholar
Hallam, A. 1990. The end-Triassic mass exinction event, p. 577583. In Sharpton, V.L. and Ward, P.D. (eds.), Global catastrophes in Earth history. Geological Society of America Special Paper 247.Google Scholar
Hallam, A. 1994. An outline of Phanerozoic biogeography. Oxford University Press, Oxford, 246 p.Google Scholar
Hansen, T.A. 1992. The patterns and causes of molluscan extinction across the Eocene/Oligocene boundary, p. 341348. In Prothero, D.R. and Berggren, W.A. (eds.), Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, NJ.Google Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, C., and Vail, P.R. 1997. Mesozoic-Cenozoic Sequence Chronostratigraphic Framework of European Basins. Canadian Society of Petroleum Geologists - SEPM Society for Sedimentary Geology Joint Convention, June 1-6, 1997, Calgary, Program with Abstracts, p. 122.Google Scholar
Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., and Smith, D.G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge, 263 p.Google Scholar
Harris, A.G. 1979. Conodont color alteration, an organo-mineral metamorphic index, and its application to Appalachian Basin geology, p. 316. In Scholle, P.A. and Schluger, P.R. (eds.), Aspects of diagenesis, Society of Economic Paleontologists and Mineralogists, Special Publication 26.Google Scholar
Hart, M.B. (ed.) 1996. Biotic recovery from mass extinction. Geological Society of London Special Publication 102,392 p.Google Scholar
Hillis, D.M. (ed.). 1996. Molecular systematics. 2nd. ed. Sinauer Associates, Sunderland, MA, 655 p.Google Scholar
Huber, B.T., Macleod, K. G., Wing, S. L. (eds.) 2000. Warm climates in Earth History. Cambridge University Press, Cambridge, 462 p.Google Scholar
Horner, J.R., and Lessem, D. 1993. The complete T. rex. Simon and Schuster, New York, 239 p.Google Scholar
Hunt, J. M. 1979. Petroleum geochemistry and geology. W.H. Freeman and Company, San Francisco, 617 p.Google Scholar
Jablonski, D. 1991. Mass extinctions: new answers, new questions, p. 4362 In Kaufman, L. and Mallory, K. (eds.), The last extinction. MIT Press, Cambridge, MA.Google Scholar
Jablonski, D. 1996. Mass extinctions: persistent problems and new directions, p. 19. In Ryder, G., Fastovsky, D., and Gartner, S. (eds.), The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307.Google Scholar
Jablonski, D., and Raup, D.M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science, 268: 389390 Google Scholar
Jablonski, D., Erwin, D.H., and Lipps, J. (eds.) 1996. Evolutionary paleobiology. University of Chicago Press, Chicago, 484 p.Google Scholar
Janvier, P. 1995. Conodonts join the club. Nature, 374: 761762 Google Scholar
Kauffman, E.G., and Hazel, J. E. (eds.) 1977. Concepts and methods of biostratography. Dowden, Hutchinson, and Ross, Stroudsburg, PA, 658 p.Google Scholar
Kauffman, E.G., and Johnson, C.C. 1988. The morphological and ecological evolution of middle and upper Cretaceous reef-building rudists. Palaios, 3: 194216 Google Scholar
Kellert, S.R. 1996. The value of life. Island Press/ Shearwater Books, Washington, DC, 263 p.Google Scholar
Kelley, P.H. 1983. Evolutionary patterns of eight Chesapeake Group molluscs: evidence for the model of punctuated equilibria. Journal of Paleontology, 57: 581598 Google Scholar
Kennett, J.P., and Stott, L.D. 1991. Abrupt deep-sea warming, paleoceanographic changes, and benthic extinctions at the end of the Paleocene. Nature, 353: 225229 Google Scholar
Kimbel, W.H. 1995. Hominid speciation and Pliocene climatic change, p. 425437. In Vrba, E.S., Denton, G.H., Partridge, T.C., and Burckle, L.H. (eds.), Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven.Google Scholar
Kirschvink, J.L., Maine, A., and Vali, H. 1997. Paleomagnetic evidence of a low-temperature origin of carbonate in the martian meteorite ALH84001. Science, 275: 16291633 Google Scholar
Kitchell, J.A., 1990. Biological selectivity of extinction, p. 3143. In Kauffman, E.G. and Walliser, O.H. (eds.), Extinction events in Earth history. Springer-Verlag, Berlin.Google Scholar
Knoll, A.H., and Stanley, S.M. (eds.) 1995. Effects of past global change on life. National Academy Press, Washington, DC, 250 p.Google Scholar
Krings, M., Stone, A., Schmitz, R.W., Krainitzki, H., Stoneking, M., and Pääbo, S. 1997. Neanderthal DNA sequences and the origin of modern humans. Cell, 90: 1930 Google Scholar
Laporte, L.F. 1968. Ancient environments. Prentice-Hall, Englewood Cliffs, NJ, 116 p.Google Scholar
Leakey, M.G., Feibel, C.S., McDougall, I., and Walker, A. 1995. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376: 565571 Google Scholar
Leakey, R.E., and Lewin, R. 1995. The sixth extinction. Patterns of life and the future of mankind. Doubleday, New York, 271 p.Google Scholar
Lees, D.R., and Edwards, D. (eds.) 1993. Evolutionary patterns and processes. Linnaean Society of London/Academic Press, London, 325 p.Google Scholar
Leffingwell, H. A. 1994. Reinvigorating industrial micropaleontology. American Paleontologist, 2(1): 14.Google Scholar
Lieberman, B. 2000. Paleobiogeography. Plenum Press, New York (in press).Google Scholar
Macfadden, B.J., Cerling, T.E., and Prado, J. 1996. Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios, 11(4): 319327.Google Scholar
Macleod, K.G., and Huber, B.T. 1996. Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature, 380: 422425 Google Scholar
Maynard Smith, J. 1984. Paleontology at the high table. Nature, 332: 311312 Google Scholar
McClure, M., and Bohonak, A.J. 1995. Non-selectivity in extinction of bivalves in the Late Cretaceous of the Atlantic and Gulf coastal plain of North America. Journal of Evolutionary Biology, 8: 779794 Google Scholar
McCoy, T.J. 1997. Exobiology. A lively debate. Nature, 386: 557558 Google Scholar
McGhee, G. 1996. The Late Devonian mass extinction: the Fransnian/Fammenian crisis. Columbia University Press, New York, 303 p.Google Scholar
McGregor, D.C., andERSON, T.W., Davey, R.J., Dettmann, M.E., Dolby, G., Edwards, L.E., Hacquebard, P.A., Jansonius, J., Kaska, H., Matthews, R.W., Mudie, P.J., Partridge, A. D., Piel, K. M., Riding, J. B., Schwab, K.W., Shane, J.D., Whiteny, B.L., Wiggins, V.D., Williams, V. E., Witner, R.J., and Zippi, P.A. 1996. Economic applications of palynology: examples, p. 12771286. In Jansonius, J. and McGregor, D.C. (eds.), Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, vol. 3.Google Scholar
McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N. 1996. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science, 273: 924930 Google Scholar
McNeil, D.H., Issler, D.R., and Snowdon, L.R. 1996. Colour alteration, thermal maturity, and burial diagenesis in fossil foraminifers. Geological Survey of Canada Bulletin 499, 34 p.Google Scholar
McSween, H.Y. 1997. Evidence for life in a Martian meteorite? GSA Today, 7(7): 17.Google Scholar
Miall, A.D. 1984. Principles of sedimentary basin analysis. Springer-Verlag, New York, 490 p.Google Scholar
Miall, A.D. 1992. Exxon global cycle chart: an event for every occasion? Geology, 20: 787790 Google Scholar
Miall, A.D. 1996. The geology of stratigraphic sequences. Springer-Verlag, New York, 433 p.Google Scholar
Mitchell, W.J.T. 1998. The last dinosaur book. University of Chicago Press, Chicago, 321 p.Google Scholar
Montuire, S., Michaux, J., Legendre, S., and Aguilar, J-P. 1997. Rodents and climate. 1. A model for estimating past temperatures using arvicolids (Mammalia: Rodentia). Palaeogeography, Palaeoclimatology, Palaeoecology, 128: 187206 Google Scholar
Morris, P.J., Ivany, L.C., Schopf, K.M., and Brett, C.E. 1995. The challenge of paleoecological stasis: reassessing sources of evolutionary stability. Proceedings of the National Academy of Sciences, 92: 1126911273 Google Scholar
NATIONAL RESEARCH COUNCIL. 1996, National Science Education Standards. National Academy Press, Washington, DC, 262 p.Google Scholar
Newton, C., and Laporte, L. 1968. Ancient environments. 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 175 p.Google Scholar
Norell, M.A., Gaffney, E.S., and Dingus, L. 1995. Discovering dinosaurs in the American Museum of Natural History. Knopf, New York, 204 p.Google Scholar
Novacek, M. 1996. Dinosaurs of the Flaming Cliffs. Anchor Books/Doubleday, New York, 367 p.Google Scholar
Nowlan, G.S., and Neuman, R.B. 1991. Paleontological contributions to Paleozoic paleogeographic and tectonic reconstructions, p. 815842. In Williams, H. (ed.), Geology of the Appalachian/Caledonian Orogen in Canada and Greenland. Geology of North America, vol. 6. Geological Survey of Canada, Geology of Canada, and the Geological Society of America.Google Scholar
Nowlan, G.S., and Barnes, C.R. 1987. Thermal maturation of Paleozoic strata in eastern Canada from conodont colour alteration index (CAI) data with implications for burial history, tectonic evolution, hotspot tracks and mineral and hydrocarbon exploration. Geological Survey of Canada Bulletin 367, 47 p.Google Scholar
Nudds, J.R., and Pettitt, C.W. (eds.) 1997. The value and valuation of natural science collections. The Geological Society, London, 276 p.Google Scholar
Ostrom, J.H. 1970. Archaeopteryx: notice of a “new” specimen. Science, 170: 537538 Google Scholar
Parrish, J.T. 1997. Interpreting pre-Quaternary climate from the geologic record. Columbia University Press, New York, 338 p.Google Scholar
Poinar, H.N., Cano, R.J., and Poinar, G.O. Jr. 1993. DNA from an extinct plant. Nature, 363: 677.Google Scholar
Poulton, T.P., and Bell, J.S. 1995. Fossils and fuels – how paleontological research at the GSC serves the resource industry. Geological Survey of Canada Open File Report 3058: 527531 Google Scholar
Poulton, T.P., Hall, R.L., Tipper, H.W., Cameron, B.E.B., and Carter, E.S. 1991. Current status of Middle Jurassic biostratigraphy of the Queen Charlotte Islands, British Columbia. Geological Survey of Canada Paper 90-10: 237252.Google Scholar
Prothero, D. 1994. The Eocene-Oligocene transition. Paradise lost. Columbia University Press, New York, 291 p.Google Scholar
Ramsay, J.G., and Huber, M.I. 1983. The techniques of modern structural geology. Vol. 1: Strain analysis. Academic Press, New York, 307 p.Google Scholar
Raup, D.M. 1991. Extinction. Bad genes of bad luck? W.W. Norton, New York, 210 p.Google Scholar
Raup, D.M., and Sepkoski, J.J. Jr. 1986. Periodic extinction of families and genera. Science, 231: 833836 Google Scholar
Rea, D.K., Zachos, J.C., Owen, R.M., and Gingerich, P.D. 1990. Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeography, Palaeoclimatology, Palaeoecology, 79: 117128 Google Scholar
Ricklefs, R.E., Buffetaut, E., Hallam, A., Hsu, K., Jablonski, D., Kauffman, E.G., Legendre, S., Martin, P., McLaren, D.J., Myers, N., and Traverse, A. 1990. Biotic systems and diversity—Report of Working Group 4, Interlaken Workshop for Past Global Changes. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 82:159168.Google Scholar
Robert, P. 1988. Organic metamorphism and geothermal history; Elf-Aquitaine and D. Reidel Publishing Company, Dodrecht, 311 p.Google Scholar
Rosenberg, G.D., and Wolberg, D.L. (eds.) 1994. Dinofest. Paleontological Society Special Publication No. 7, 504 p.Google Scholar
Ross, R.M., and Allmon, W. D. (eds.) 1990. Causes of evolution. A paleontological perspective. University of Chicago Press, Chicago, 479 p.Google Scholar
Ruskin, J., 1862. Munera pulveris. (reprinted 1897, Merrill and Baker, New York, 485 p.)Google Scholar
Rutherford, F.J. 1989. Science for all Americans. American Association for the Advancement of Science and Oxford University Press, New York, 272 p.Google Scholar
Ryder, G., Fastovsky, D., and Gartner, S. (eds.) 1996. The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307, 569 p.Google Scholar
Schopf, T.J.M. (ed.) 1972. Models in paleobiology. Freeman Cooper, San Francisco, 250 p.Google Scholar
Schopf, T.J.M. (ed.) 1980. Paleoceanography. Harvard University Press, Cambridge, 341 p.Google Scholar
Schweitzer, M.H., Marshall, M., Carron, K., Bohle, D.S., Busse, S.C., Arnold, E.V., Barnard, D., Horner, J.R., and Starkey, J.R. 1997. Heme compounds in dinosaur trabecular bone. Proceedings of the National Academy of Sciences, 94: 62916296 Google Scholar
Scotchmoor, J., and McKinney, F.K. (eds.) 1996. Learning from the fossil record. Paleontological Society Papers 2, 331 p.Google Scholar
Scotchmoor, J., and Springer, D. (eds.) 1999. Evolution. Investigating the evidence. Paleontological Society Special Pulbication Volume 9, 406 p.Google Scholar
Sepkoski, J.J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology, 4: 223251 Google Scholar
Sepkoski, J.J. Jr 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology, 5:222251.Google Scholar
Sepkoski, J.J. Jr 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7: 3653 Google Scholar
Sepkoski, J.J. Jr 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10: 246267 Google Scholar
Sepkoski, J.J. Jr 1988. Alpha, beta, gamma — where does all the diversity go? Paleobiology, 14: 221234 Google Scholar
Sepkoski, J.J. Jr 1991. Diversity in the Phanerozoic oceans: a partisan review, p. 210236. In Dudley, E.C., (ed.), The unity of evolutionary biology, vol. 1, Dioscorides Press, Portland, OR.Google Scholar
Sepkoski, J.J. Jr 1992a. Phylogenetic and ecologic patterns in the Phanerozoic history of marine biodiversity, p. 77100. In Eldredge, N. (ed.), Systematics, ecology, and the biodiversity crisis. Columbia University Press, New York.Google Scholar
Sepkoski, J.J. Jr 1992b. A compendium of fossil marine animal families. 2nd. ed., Milwaukee Public Museum Contributions in Biology and Geology 83, 156 p.Google Scholar
Sepkoski, J.J. Jr 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology, 19(1): 4351.Google Scholar
Sepkoski, J.J. Jr 1997. Presidential address: Biodiversity: past, present, and future. Journal of Paleontology, 71(4): 533539.Google Scholar
Sepkoski, J.J. Jr, Bambach, R.K., Raup, D.M., and Valentine, J.W., 1981. Phanerozoic marine diversity and the fossil record. Nature, 293: 435437 Google Scholar
Shackleton, N.J. 1984. Oxygen isotope evidence for Cenozoic climatic change, p. 2734. In Brenchley, P.J. (ed.), Fossils and climate. Wiley, Chichester.Google Scholar
Shaw, A.B. 1964. Time in Stratigraphy; McGraw-Hill Book Company, New York, 365 p.Google Scholar
Smith, P.L. 1989. Paleobiogeography and plate tectonics. Geoscience Canada, 15(4): 261279.Google Scholar
Soltis, P.S., Soltis, D.E., and Smiley, C.J. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences, 89: 449451 Google Scholar
Springer, D.A. 1997. Geology in the popular press: paleontology's greatest hits. Geotimes, 42(3): 2023.Google Scholar
Stanley, S.M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Geological Society of America Memoir 125, 296 p.Google Scholar
Stanley, S.M. 1985. Extinction as part of the natural evolutionary process: a paleobiological perspective, p. 3146. In Hoage, R.J. (ed.), Animal extinctions. What everyone should know. Smithsonian Institution Press, Washington, DC.Google Scholar
Stanley, S.M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the Western Atlantic bivalve fauna. Palaios, 1: 1736 Google Scholar
Stanley, S.M. 1995. Climatic forcing and the origin of the human genus, p. 233244. In Knoll, A.H. and Stanley, S.M. (eds.), Effects of past global change on life. National Academy Press, Washington, DC.Google Scholar
Stanley, S.M. 1996. Children of the ice age. Harmony Books, New York, 278 p.Google Scholar
Stanley, S.M., and Yang, X. 1987. Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate multilineage study. Paleobiology 13: 113139 Google Scholar
Staplin, F.L., Dow, W.G., Milner, C.W.D., O'Connor, D.I., Pocock, S.A.J., Van Gijzel, P., Welte, D., and Yukler, M.A. 1982. How to assess maturation and paleotemperatures. Society of Economic Paleontologists and Mineralogists, Short Course Number 7, xxx p.Google Scholar
Steadman, D.W. 1991. Extinction of species: past, present, and future, p. 156169. In Wyman, R. L. (ed.), Global climate change and life on Earth. Routledge, Chapman and Hall, New York.Google Scholar
Steadman, D.W. 1997. Human-caused extinction of birds, p. 139162. In Reaka-Kudla, M. L., Wilson, D.E., and Wilson, E.O. (eds.), Biodiversity II. Understanding and protecting our biological resources., Joseph Henry Press, Washington, DC.Google Scholar
Stott, L.D., and Tang, C.M. 1996. Reassessment of foraminiferal-based tropical sea surface *18O paleotemperatures. Paleoceanography, 11(1): 3756.Google Scholar
Taylor, D.G., Callomon, J.H., Hall, R., Smith, P.L., Tipper, H.W., and Westermann, G.E.G. 1984. Jurassic ammonite biogeography of western North America: the tectonic implications, p. 121141. In Westermann, G.E.G. (ed.), Jurassic-Cretaceous biochronology and palaeogeography of North America. Geological Association of Canada Special Paper 27.Google Scholar
Tissot, B.P., Pelet, R., and Ungerer, P. 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. American Association of Petroleum Geologists Bulletin, 71: 14451466 Google Scholar
Utting, J. 1987. Palynology of the Lower Carboniferous Windsor Group and Windsor- Canso boundary beds of Nova Scotia, and their equivalents in Quebec, New Brunswick and Newfoundland. Geological Survey of Canada Bulletin 374, 93 p.Google Scholar
Utting, J., Goodarzi, F., Dougherty, B.J., and Henderson, C.M. 1989. Thermal maturity of Carboniferous and Permian rocks of the Sverdrup basin, Canadian Arctic Archipelago. Geological Survey of Canada Paper 89-19, 20 p.Google Scholar
Valentine, J.W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology, 12: 684709 Google Scholar
Valentine, J.W., Awramik, S.W., Signor, P.W., and Sadler, P.M. 1991. The biological explosion at the Precambrian-Cambrian boundary. Evolutionary Biology, 25: 279356 Google Scholar
Vrba, E.S. 1995. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution, p. 385424. In Vrba, E.S., Denton, G.H., Partridge, T.C., and Burckle, L.H. (eds.), Yale University Press, New Haven.Google Scholar
Vrba, E.S., Denton, G.H., Partridge, T.C., and Burckle, L.H. (eds.) 1995. Paleoclimate and evolution with emphasis on human origins. Yale Univ. Press, New Haven, 547 p.Google Scholar
Walliser, O.H. (ed.) 1986. Global Bio-Events. A critical approach. Springer-Verlag, Berlin, 442 p.Google Scholar
Ward, P.D. 1994. The end of evolution. On mass extinctions and the preservation of biodiversity. Bantam Books, New York, 302 p.Google Scholar
Ward, P.D., 1997. The call of distant mammoths. Why the ice age mammals disappeared. Copernicus/Springer-Verlag, New York, 264 p.Google Scholar
Ward, P.D., and Brownlee, D.C. 2000. Rare Earth: Why complex life is uncommon in the universe. Springer-Verlag, New York. 336 p.Google Scholar
Webb, T. 1992. Past changes in vegetation and climate: lessons for the future. pp. 5975. In Peters, R.L. and Lovejoy, T.E. (eds.), Global warming and biological diversity. Yale University Press, New Haven.Google Scholar
Whyte, D. 1995. The heart aroused. Poetry and the preservation of the soul in corporate America. Currency/Doubleday, New York, 307 p.Google Scholar
Wignall, P.B., and Hallam, A. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford, 320 p.Google Scholar
Williams, S.H., Harper, D.A.T., Neuman, R.B., Boyce, W.D., and Niocaill, C.M. 1995. Lower Paleozoic fossils from Newfoundland and their importance in understanding the history of the Iapetus Ocean, p. 115126. In Hibbard, J.P., van Staal, C.R., and Cawood, P. A. (eds.), Current perspectives in the Appalachian-Caledonian Orogen. Geological Association of Canada Special Paper 41.Google Scholar
Wing, S.L. 1997. Global warming and plant species richness: a case study of the Paleocene/Eocene boundary, p. 163186. In Reaka-Kudla, M. L., Wilson, D.E., and Wilson, E.O. (eds.) Biodiversity II. Understanding and protecting our biological resources. Joseph Henry Press, Washington, DC.Google Scholar
Wing, S.L., and Greenwood, D.R. 1993. Fossils and fossil climate: the case for equable continental interiors in the Eocene, p. 243252. In Paleoclcimates and their modeling, with special reference to the Mesozoic Era. Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., and Spicer, R.A. (eds.), Philosophical Transactions of the Royal Society of London B, 341.Google Scholar
Wolberg, D.L., and Stump, E. (eds.), 1997. Dinofest International, Proceedings of the Symposium. Academy of Natural Sciences of Philadelphia, 587 p.Google Scholar
Wolfe, J.A. 1993. A method for obtaining climatic parameters from leaf assemblages. U.S. Geological Survey Bulletin 2040: 173 Google Scholar
Wolfe, J.A. and Poore, R. 1982. Tertiary marine and non-marine climatic trends, p. 154158. In Climate in Earth history. National Academy Press, Washington, DC.Google Scholar
Wood, B. 1994. The oldest hominid yet. Nature, 371: 280281 Google Scholar
Wood, J.M., Thomas, R.G., and Visser, J. 1988. Fluvial processes and vertebrate taphonomy: the Upper Cretaceous Judith River Formation, south-central Dinosaur Provincial Park, Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 66: 127143 Google Scholar
Woodward, S.R., Wewland, N.J., and Bunnell, M. 1994. DNA sequence from Cretaceus period bone fragments. Science, 266: 12291232 Google Scholar
Zachos, J.C., Stott, L.D., and Lohmann, K.C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9(2): 353387.Google Scholar