No CrossRef data available.
Published online by Cambridge University Press: 26 July 2017
Paleontologists have lavished much time and energy on description and explanation of large-scale patterns in the fossil record (e.g., mass extinctions, histories of monophyletic taxa, deployment of major biogeographic units), while paying comparatively little attention to biologic patterns preserved only in local stratigraphic sequences. Interpretation of the large-scale patterns will always be seen as the chief justification for the science of paleontology, but solving problems framed by long time spans and large areas is rife with tenuous inference and patterns are prone to varied interpretation by different investigators using virtually the same data sets (as in the controversy over ultimate cause of the terminal Cretaceous extinctions). In other words, the large-scale patterns in the history of life are the true philosophical property of paleontology, but there will always be serious problems in attempting to resolve processes that transpired over millions to hundreds-of-millions of years and encompassed vast areas of seafloor or landscape. By contrast, less spectacular and more commonplace changes in local habitats (often related to larger-scale events and cycles) and attendant biologic responses are closer to our direct experience of the living world and should be easier to interpret unequivocally. These small-scale responses are reflected in the fossil record at the scale of local outcrops.