Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T06:11:28.173Z Has data issue: false hasContentIssue false

Will the Dinosaurs Rise Again?

Published online by Cambridge University Press:  26 July 2017

Mary Higby Schweitzer
Affiliation:
Paleontology and Biology Departments Museum of the Rockies, Bozeman, Montana 59715
Raúl J. Cano
Affiliation:
Biological Sciences Department California Polytechnic State University, San Luis Obispo, CA 93407
Get access

Extract

The movie Jurassic Park has engendered much excitement and some speculation among both the general public and the scientific community as to the possibilities of genetic research and molecular preservation.

But will the dinosaurs “rise” again? Will scientists be able to ‘clone’ a dinosaur out of bits of genetic material and once again unleash these great beasts to walk the earth? If it is possible, should it be attempted? If not, why are time, money and effort being expended by several groups of investigators in attempts to isolate and characterize the DNA of these extinct creatures, if such DNA can possibly still exist? What can we hope to learn from these efforts, should they be fruitful?

Type
Bring 'em Back Alive
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adegoke, J. A., Ighavini, B. O., and Onuigbo, R. O., 1991. Characteristic features of the sonicated DNA of Agama agama agama L. (Reptilia, Agamidae) on hydroxyapatite columns, using mouse DNA as a reference. Genetica 83: 171180 CrossRefGoogle ScholarPubMed
Ambler, R. P. and Daniel, M. 1991. Proteins and molecular palaeontology. Phil. Trans. R. Soc. Lond. B 333:381389.Google Scholar
Armstrong, W. G.; Halstead, L. B., Reed, F. B., and Wood, L. 1983. Fossil Proteins in Vertebrate Calcified Tissues. Phil. Trans. R. Soc. Lond., B. 301:301343.Google Scholar
Bachofen-Echt, A. 1949. Der bernstein und seine einschlusse. Springer-Verlag, Vienna. 204 pCrossRefGoogle Scholar
Bada, J. 1991. Amino acid cosmogeochemistry. Phil Trans. R. Soc. Lond. B. 333:349358.Google Scholar
Bahl, O. P., and Smith;, E. L. 1965. Amino acid sequence of rattlesnake heart cytochrome c. J. Biol. Chem. 240:35853593 CrossRefGoogle ScholarPubMed
Bianco, P.; Hayashi, Y.; Silverstrini, G.; Termine, J. D.; and Bonnucci;, E. 1985. Osteonectin and GLA-Protein in Calf Bone: Ultrastructural Immunohistochemical Localization Using the Protein A-gold Method. Calcified Tissue International, 37:684686.Google Scholar
Braunitzer, G. and Hiebl, I., 1988. Molecular aspects of high altitude respiration of birds. Hemoglobins of the striped goose (Anser indicus), the Andean goose, (Chloephaga melanoptera) and vulture (Gyps rueppellii). Naturwissenschaften 75:280–87.Google ScholarPubMed
Cano, R. J., and Poinar, H. N. 1993. Rapid Isolation of DNA from Fossil and Museum Specimens Suitable for the Polymerase Chain Reaction. BioTechniques. 15:432436 Google Scholar
Cano, R. J., Poinar, H. N., Roubik, D.W., and Poinar, G.O. Jr. 1992b Enzymatic amplification and nucleotide sequencing of portions of the 18s rRNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25-40 million year old Dominican amber. Med. Sci. Res. 20:619623 Google Scholar
Cano, R. J., Poinar, H., and Poinar, G. O. Jr. 1992a. Isolation and Partial Characterization of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Med. Sci. Res. 20:249251 Google Scholar
Cano, R. J., Poinar, H., Pieniazek, N., Acra, A., and Poinar, G. O. Jr. 1993. Amplification and sequencing of DNA from a 120-135 million year old weevil. Nature 363:536538 Google Scholar
Caruso, C.; Rutigliano, B., Romano, M., and diPrisco, G. 1991. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. Biochim. Biophys. Acta 1078:273282 Google Scholar
Chinsamy, Anusuya, 1991. Physiological Implications of the Bone Histology of Syntarsus rhodesiensis (Saurischia: Theropoda) Palaeontol. Africana 27:7782 Google Scholar
Collins, M.J., Muyzer, G., Westbroek, P., Curry, G.B., Sandberg, P.A., Xu, S. J.; Quinn, R. and McKinnon, D., 1991a, Preservation of fossil biopolymeric structures: Conclusive immunological evidence: Geochim. Cosmochim. Acta, 55:22532257 Google Scholar
Danfield, Donald E. and Raiswell, Robert, 1991. Pyrite Formation and Fossil Preservation . In Taphonomy: Releasing the Data Locked in the Fossil Record. pp 337387.Google Scholar
Darnell, James, Lodish, Harvey, Baltimore, David, eds, 1990. Molecular Cell Biology. Scientific American Books, Inc., 1105 pages.Google Scholar
Dayhoff, M.O., and Eck, R.V. 1968. Atlas of Protein Sequence and Structure, 1967-68. Silver Spring, Maryland: National Biomedical Research Foundation.Google Scholar
de Jong, E.W., Westbroek, P., Westbroek, J.F., and Bruning, J.W., 1974. Preservation of antigenic properties of macromolecules over 70 Myr. Nature. 252:6364.Google Scholar
de Ricqles, Armand, 1980. Tissue Structures of Dinosaur Bone; Functional significance and Possiblt Relation to Dinosaur Physiology . In A Cold Look at the Warm Blooded Dinosaurs, Thomas, Roger D.K. and Olson, Everett C., eds. pp 103139 Google Scholar
de Ricqles, Armand, 1983. Cyclical Growth in the long limb bones of a sauropod dinosaur. Acta Palaeontol. Pol. 28(1-2):225232 Google Scholar
deQueiroz, K. 1985. The ontogenetic method for determining character state polarity and its relevance to phylogenetic systematics. Sys. Zool. 34:280299.CrossRefGoogle Scholar
DeSalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D. 1992. DNA sequences from a fossil termite in oligo-miocene amber and their phylogenetic relationships. Science 257:50785081.CrossRefGoogle Scholar
Eernisse, Douglas and Kluge, Arnold G., 1993. Taxonomic Congruence versus Total Evidence, and Amniote Phylogeny Inferred from Fossils, Molecules, and Morphology. Mol. Biol. Evol. 10(6):11701195.Google Scholar
Eglinton, Geoffrey, and Logan, Graham A., 1991. Molecular Preservation. Phil. Trans. R. Soc. Lond. B 333:315328.Google ScholarPubMed
Golenberg, E.M., Giannasi, D.E., Glegg, M.T., Smiley, C.J., Durbin, M., Henderson, D., and zurawski, G. 1990. Chloroplast DNA sequence from Miocene Magnolia species. Nature 344:656658 Google Scholar
Grossman, Lawrence. 1991. Repair of Damaged DNA . Encyclopedia of Human Biology, Vol. 6, pp 547553 Google Scholar
Gurley, L. R., Valdez, J.G., Spall, W.D., Smith, B.F., and Gillette, D.D., 1991. Proteins in the Fossil Bone of the Dinosaur, Seismosaurus. J. Prot. Chem. 10 (1): 7590 Google Scholar
Hagelberg, E. and Clegg, J.B., 1993. Genetic polymorphisms in prehistoric Pacific islanders determined by analysis of ancient bone DNA. Proc. R. Soc. Lond. Biol. 252(1334) pp 163170.Google ScholarPubMed
Hedges, S. Blair, Kumar, Sudhir, Tamura, Koichiro, and Stoneking, Mark, 1992. Human Origins and Analysis of Mitochondrial DNA Sequences. Science, 255:737739.Google Scholar
Higuchi, P. and Wilson, A.C., 1984. Recovery of DNA from extinct species. Fed. Proc. 43:1557 Google Scholar
Higuchi, R., Bowman, B., Freiberger, M, Ryder, O.A., and wilson, A.C. 1984. DNA sequences from the Quagga, an extinct member of the horse famil. Nature. 312:282284 Google Scholar
Islam, , Persson, A. B., Zaidi, Z.H., and Jornvall, H., 1990. Sea snake (Microcephalophis gracilis) Hemoglobin: Primary structure and the relationships to other forms. J. Prot. Chem. 9:533541.CrossRefGoogle ScholarPubMed
Johnson, P.H., Olson, C.B., and Goodman, M., 1985. Isolation and characterization of the deoxyribonucleic acid from tissue of the woolly mammoth, Mammuthus primigenius. Comp. Biochem. Physio. [B] 81:1045–51.Google Scholar
Joysey, K.A. 1988. The use of amino acid sequences in phylogenetic analysis. Molecular Evolution and the fossil record. (ed. Broadhead, T. W.) pp3443. Knoxville, Tennessee: Palaeontological Society of America.Google Scholar
Kocher, T.D.; Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X., and Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci., USA 86:61966200.Google Scholar
Langenheim, J. H. 1990. Plant Resins. Am. Sci. 78:1628 Google Scholar
Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature, 362:709715 Google Scholar
Lowenstein, J.M., 1981. Immunological reactions from fossil material. Phil. Trans. R. Soc. Lond. B 292:143149.Google Scholar
Macko, Stephen A. and Engel, Michael H. 1991. Assessment of indigeneity in fossil organic matter: amino acids and stable isotopes. Phil. Trans. R. Soc. Lond. B 333:367374.Google Scholar
Meijer, H., Perizonius, W.R.K., and Geraedts, J.P.M., 1992. Recovery and identification of DNA sequences harboured in preserved ancient human bones. Biochem. Biophys. Res. Com. 183 (2), 367374.CrossRefGoogle ScholarPubMed
Moodie;, R.L., 1923. Paleopathology. University of Illinois Press. Urbana, Illinois, 567 pages.Google Scholar
Muyzer, Gerard and Westbroek, Peter. 1989. An immunohistochemical technique for the localization of preserved biopolymeric remains in fossils. Geochim. Cosmochim. Acta. 53:16991702 CrossRefGoogle Scholar
Muyzer, Gerard, Sandberg, Philip, Knapen, Marjo H.J., Vermeer, Cees, Collins, Matthew, Westbroek, Peter. 1992. Preservation of the bone protein osteocalcin in dinosaurs. Geology. 20:871874 Google Scholar
Naito, Emiko, Dewa, Kohji, Ymanouchi, Haruto, and Kominami, Ryo, 1991. Ribosomal Ribonucleic Acid (rRNA) Gene Typing for Species Identification. J. Forensic Sci. JFSCA, 37(2):396403.Google Scholar
Pääbo, S. 1985. Molecular cloning of ancient Egyptian mummy DNA. Nature 314:644645 Google Scholar
Pääbo, S. 1989. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. the Natl. Acad. Sci. USA. 86:19391943.Google Scholar
Perutz, M. F. 1983. Species adaptation in a protein molecule. Mol. Biol. Evol. 1:128.Google Scholar
Poinar, H., Poinar, G. O. Jr., and Cano, R. J. 1993 Molecular phylogeny of an extinct legume (Hymenaea protera) from Dominican amber. Nature. 363:677.Google Scholar
Poinar, G. O. Jr. 1992 Life in amber. Stanford University Press, Palo Alto, CA.Google Scholar
Poinar, G. O. Jr., and Hess, R. 1985a Ultrastructure of 40 million year old Insect Tissue. Science 215: 12411242 Google Scholar
Poinar, G.O. Jr., and Hess, R. 1985 b Preservative qualities of recent and fossil resins: electron micrograph studies on the tissue preserved in baltic amber. J. Baltic Stud. 16(3): 222230.CrossRefGoogle Scholar
Reid, R.E.H., 1984a. Primary bone and dinosaurian physiology. Geological Magazine, 121(6):589598 Google Scholar
Reid, R.E.H., 1984b. The Histology of Dinosaur Bone, and its Possible Bearing on Dinosaur Physiology. Symp. Zool. Soc. Lond. 52:629663.Google Scholar
Reid, R.E.H., 1985. On Supposed Haversian Bone from the Hadrosaur Anatosaurus, and the Nature of Compact Bone in Dinosaurs. J. Paleontol. 59(1):140148.Google Scholar
Rodewald, K., Oberthur, W., and Braunitzer, G. 1987. Homeothermic fish and hemoglobin: primary structure of the hemoglobin from bluefin tuna (Thunnus thynnus, Scromboidei). Biol. Chem. Hoppe Seyler 368:795805 Google Scholar
Romanowski, G., Lorenz, M. G.; Wackernagel, W. 1991. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 57(4):10471061.Google Scholar
Romero-Herrera, A.E., Hehmann, H., Joysey, K.A. and Friday, A.E. 1978. On the evolution of myoglobin. Phil Trans. R. Soc. B. 283:61163 Google Scholar
Romero-Herrera, A.E., Lieska, N., Friday, A.E. and Joysey, K.A. 1982 The primary Structure of carp nmyoglobin in the context of molecular evolution. Phil Trans. R. Soc. B 297:125.Google ScholarPubMed
Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:54635466 Google Scholar
Seitz, A.L.L., 1907. Vergleichende Studien uber den mikroskopischen knochenbau fossiler und rezenter Reptilien und dessen Bedeutung fur das Wachstum und Umbildung des Knochengewebes im allegemeinen. Abh. d. Kaiserl. Leop. -Carol. deutsch. Akad. d. Naturforsch., Nova Acta, 87:230370 Google Scholar
Stein, D.B., Thompson, W. F., and Belford, H.S., 1979. Studies on DNA sequences in the Osmundaceae. J. Mol. Evol. 13:215–32CrossRefGoogle ScholarPubMed
Swinton, W.E., 1934. Dinosaurs and Disease; in The Dinosaurs. Thomas Murby and Co., London; 233ppGoogle Scholar
Thomas, R. H. Schaffner, W., Wilson, A.C., Pääbo, S. 1989. DNA phylogeny of the extinct marsupial wolf. Nature 340:465467.Google Scholar
Van de Peer, Yves; Neefs, Jean-Marc, and deWachter, Rupert; 1990. Small Ribosomal Subunit RNA Sequences, Evolutionary Relationships among Different Life Forms, and Mitochondrial Origins. J. Mol. Evol. 30:463476 Google Scholar
VanRens, Geert; Hol, Frans A., de Jong, Wilfried W., and Bloemendal, Hans, 1991. Presence of Hybridizing DNA Sequences Homologous to Bovine Acidic and Basic b-Crystallins in All Classes of Vertebrates. J. Mol. Evol., 33:457463.Google Scholar
Varrichio, D. 1993. Bone microstructure of the upper Cretaceous theropod dinosaur Troodon formosus. J. Vert. Paleontol. 113:99104.Google Scholar
Wang, X. S. and Bada, J. 1994. Amino acids in a 40 million years old fly inclusion in amber: implications for the preservation of ancient DNA. Nature Submitted.Google Scholar
Weiner, S; Lowenstam, H.A., and Hood, L., 1976. Characterization of 80-million year old mollusk shell proteins. Proc. Natl. Acad. Sci., USA, 73(8):25412545.Google Scholar
Weiner, Stephen, 1980. Molecular evolution from the fossil record-a dream or a reality? Paleobiology 6(1):45.Google Scholar
Wert, C.A. and Miller, M., 1988. The polymeric nature of amber. Bull. Amer. Physiol. Soc. 33:497.Google Scholar