Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T06:11:50.108Z Has data issue: false hasContentIssue false

Hierarchy, Individuality and Paleoecosystems

Published online by Cambridge University Press:  26 July 2017

William Miller III*
Affiliation:
Geology Department and Marine Laboratory, Humboldt State University, Arcata, California 95521
Get access

Extract

Techniques and field observations that detect “spatial variation” and “temporal dynamics” in fossil deposits have become important research programs in paleosynecology. These studies attempt to delineate aggregates and sequences of fossils at varied scales that appear to result from processes encompassing larger areas and greater time spans than the processes familiar to neoecologists. Description and modeling of patterns and processes at these scales would be significant contributions to historical biology, but little attention has been given to the ontology of “natural” multispecies units discernable in fossil data sets at varied spatio-temporal scales of resolution. Do patterns at any of these nested levels of variation – patches within shell beds, shell beds within biofacies, and so on – represent the elusive original community of organisms?

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, T. F. H., and Starr, T. B. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago, 310 p.Google Scholar
Boucot, A. J. 1978. Community evolution and rates of cladogenesis, p. 545655. In Hecht, M. K., et al. (eds.), Evolutionary Biology, Vol. 11. Plenum, New York.Google Scholar
Bretsky, P. W., and Klofak, S. M. 1986. “Rules of assembly” for two Late Ordovician communities. Palaios, 1: 462477.Google Scholar
Brett, C. E., Miller, K. B., and Baird, G. C. This volume. A temporal hierarchy of paleoecologic processes within a Middle Devonian epeiric sea.Google Scholar
Brooks, D. R., and Wiley, E. O. 1986. Evolution as Entropy: Toward a Unified Theory of Biology. University of Chicago Press, Chicago, 335 p.Google Scholar
Case, T. J., and Cody, M. L. 1987. Testing theories of island biogeography. American Scientist, 75: 402411.Google Scholar
Davis, M. B. 1986. Climatic instability, time lags, and community disequilibrium, p. 269284. In Diamond, J. and Case, T. J. (eds.), Community Ecology. Harper and Row, New York.Google Scholar
Dayton, P. K., and Tegner, M. J. 1984. The importance of scale in community ecology: a kelp forest example with terrestrial analogs, p. 457481. In Price, P. W., et al. (eds.), A New Ecology: Novel Approaches to Interactive Systems. John Wiley and Sons, New York.Google Scholar
Delcourt, P. A., and Delcourt, H. R. 1987. Long-Term Forest Dynamics of the Temperate Zone. Springer-Verlag, New York, 439 p.Google Scholar
Diamond, J., and Case, T. J. (eds.). 1986. Community Ecology. Harper and Row, New York, 665 p.Google Scholar
Elder, W. P. 1987. The paleoecology of the Cenomanian-Turonian (Cretaceous) stage boundary extinctions at Black Mesa, Arizona. Palaios, 2: 2440.CrossRefGoogle Scholar
Eldredge, N. 1985. Unfinished Synthesis: Biological Hierarchies and Modern Evolutionary Thought. Oxford University Press, New York, 237 p.Google Scholar
Eldredge, N., and Salthe, S. N. 1984. Hierarchy and evolution. Oxford Surveys in Evolutionary Biology, 1: 184208.Google Scholar
Feldman, H. R. 1988. Scales of patchiness in benthic marine faunas with an example from the Waldron Shale (Silurian, Indiana). Geological Society of America Abstracts with Programs, 20: A225.Google Scholar
Futuyma, D. J. 1986. Evolution and coevolution in communities, p. 369381. In Raup, D. M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life, Dahlem Konferenzen 1986. Springer-Verlag, Berlin.Google Scholar
Graham, R. W. 1986. Response of mammalian communities to environmental changes during the Late Quaternary, p. 300313. In Diamond, J. and Case, T. J. (eds.), Community Ecology. Harper and Row, New York.Google Scholar
Grene, M. 1987. Hierarchies in biology. American Scientist, 75: 504510.Google Scholar
Hoffman, A., and Kitchell, J. A. 1984. Evolution in a pelagic planktic system: a paleobiologic test of models of multi-species evolution. Paleobiology, 10: 933.Google Scholar
Holling, C. S. 1986. The resilience of terrestrial ecosystems: local surprise and global change, p. 292317. In Clark, W. C. and Munn, R. E. (eds.), Sustainable Development of the Biosphere. Cambridge University Press, Cambridge.Google Scholar
Jablonski, D., et al. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science, 222: 11231125.Google Scholar
Johnson, L. 1988. The thermodynamic origin of ecosystems: a tale of broken symmetry, p. 75105. In Weber, B. H., et al. (eds.), Entropy, Information, and Evolution. MIT Press, Cambridge, Massachusetts.Google Scholar
Johnson, R. G. 1972. Conceptual models of benthic marine communities, p. 148159. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper and Co., San Francisco.Google Scholar
Kauffman, E. G. 1984. The fabric of Cretaceous marine extinctions, p. 151246. In Berggren, W. A. and Van Couvering, J. A. (eds.), Catastrophism and Earth History: The New Uniformitarianism. Princeton University Press, Princeton.Google Scholar
Lovejoy, T. E., et al. 1984. Ecosystem decay of Amazon forest remnants, p. 295325. In Nitecki, M. H. (ed.), Extinctions. University of Chicago Press, Chicago.Google Scholar
MacPhee, R. D. E., Burney, D. A., and Wells, N. A. 1985 Early Holocene chronology and environment of Ampasambazimba, a Malagasy subfossil lemur site. International Journal of Primatology, 6: 463489.Google Scholar
Margalef, R. 1968. Perspectives in Ecologic Theory. University of Chicago Press, Chicago, 111 p.Google Scholar
May, R. M. 1975. Patterns of species abundance and diversity p. 81120. In Cody, M. L. and Diamond, J. M. (eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Miller, A. I. 1988a. Spatial resolution in subfossil molluscan remains: implications for paleobiological analyses. Paleobiology, 14: 91103.CrossRefGoogle Scholar
Miller, A. I. 1988b. Spatial variability in the fossil record: its calibration and evolutionary significance. Geological Society of America Abstracts with Programs, 20: A255.Google Scholar
Miller, K. B., Brett, C. E., and Parsons, K. M. 1988. The paleoecologic significance of storm-generated disturbance within a Middle Devonian muddy epeiric sea. Palaios, 3: 3552.Google Scholar
Miller, W. III. 1986. Paleoecology of benthic community replacement. Lethaia, 19: 225231.CrossRefGoogle Scholar
Miller, W. III. 1988. Community local history. Lethaia, 21: 9596.CrossRefGoogle Scholar
Miller, W. III., and Du Bar, J. R. 1988. Community replacement of a Pleistocene Crepidula biostrome. Lethaia, 21: 6778.Google Scholar
Milligan, B. G. 1986. Punctuated evolution induced by ecologic change. American Naturalist, 127: 522532.Google Scholar
Odum, E. P. 1969. The strategy of ecosystem development. Science, 164: 262270.CrossRefGoogle ScholarPubMed
Olson, E. C. 1952. The evolution of a Permian vertebrate chronofauna. Evolution, 6: 181196.CrossRefGoogle Scholar
Pickett, S. T. A., and White, P. S. (eds.). 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando, Florida, 472 p.Google Scholar
Pilette, R., and Salthe, S. N. 1985. A search for system boundaries in ecology: multiple criteria. Proceedings of the Society of General Systems Research, 1: 4553.Google Scholar
Pulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist, 132: 652661.Google Scholar
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science, 235: 167171.CrossRefGoogle ScholarPubMed
Rollins, H.B., Carothers, M., and Donahue, J. 1979. Transgresion, regression and fossil community succession. Lethaia, 12:89104.CrossRefGoogle Scholar
Rollins, H.B., West, R. R., and Busch, R. M. This volume. Hierarchical genetic stratigraphy and marine paleoecology.Google Scholar
Roughgarden, J., and Diamond, J. 1986. Overview: the role of species interactions in community ecology, p. 333343. In Diamond, J. and Case, T. J. (eds.), Community Ecology. Harper and Row, New York.Google Scholar
Roughgarden, J., Gaines, S., and Possingham, H. 1988. Recruitment dynamics in complex life cycles. Science, 241: 14601466.Google Scholar
Salthe, S. N. 1983. An extensional definition of functional individuals. American Naturalist, 121: 139144.Google Scholar
Salthe, S. N. 1985. Evolving Hierarchical Systems: Their Structure and Representation. Columbia University Press, New York, 343 p.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist, 102: 243282.CrossRefGoogle Scholar
Schneider, E. D. 1988. Thermodynamics, ecological succession, and natural selection: a common thread, p. 107138. In Weber, B. H., et al. (eds.), Entropy, Information, and Evolution. MIT Press, Cambridge, Massachusetts.Google Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontological resolution. Paleobiology, 6: 408426.CrossRefGoogle Scholar
Schindel, D. E. 1982. Resolution analysis: a new approach to gaps in the fossil record. Paleobiology, 8: 340353.Google Scholar
Schindler, D. W., et al. 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science, 228: 13951401.CrossRefGoogle ScholarPubMed
Shotwell, J. A. 1964. Community succession in mammals of the Late Tertiary, p. 135150. In Imbrie, J. and Newell, N. D. (eds.), Approaches to Paleoecology. John Wiley and Sons New York.Google Scholar
Springer, D. A., and Miller, A. I. This volume. Levels of spatial variability: the “community” problem.Google Scholar
Staff, G. M., et al. 1986. Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geological Society of America Bulletin, 97: 428443.Google Scholar
Staff, G. M., and Powell, E. N. 1988. The paleoecological significance of diversity: the effect of time-averaging and differential preservation on macroinvertebrate species richness in death assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 63: 7389.Google Scholar
Stenseth, N.-C., and Maynard Smith, J. 1984. Coevolution in ecosystems: Red Queen evolution or stasis? Evolution, 38: 870880.Google Scholar
Underwood, A. J. 1986. What is a community?, p. 351367. In Raup, D. M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life, Dahlem Konferenzen 1986. Springer-Verlag, Berlin.Google Scholar
Valentine, J. W. 1968. The evolution of ecological units above the population level. Journal of Paleontology, 42: 253267.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice Hall, Englewood Cliffs, New Jersey, 511 p.Google Scholar
Van Valen, L. 1976. Energy and evolution. Evolutionary Theory, 1: 179229.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation. Princeton University Press, Princeton, 527 p.CrossRefGoogle Scholar
Walker, K. R., and Laporte, L. F. 1970. Congruent fossil communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology, 44: 928944.Google Scholar
Yodzis, P. 1981. The structure of assembled communities. Journal of Theoretical Biology, 92: 103117.Google Scholar