Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:49:18.150Z Has data issue: false hasContentIssue false

What is gradualism? Cryptic speciation in globorotaliid foraminifera

Published online by Cambridge University Press:  08 April 2016

Richard D. Norris
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
Richard M. Corfield
Affiliation:
Department of Earth Sciences, Oxford University, OX1 3PR Oxford, United Kingdom
Julie Cartlidge
Affiliation:
Department of Earth Sciences, Oxford University, OX1 3PR Oxford, United Kingdom

Abstract

Analysis of the evolution of the Globorotalia (Fohsella) lineage of planktic foraminifera suggests that reproductive ecology and shell shape have evolved independently in this group. The silhouette of fohsellid shells displays a nearly unbroken anagenetic trend, yet isotopic data show that the fohsellids changed their depth of reproduction during the anagenetic evolution of their skeletons. Remarkably, there are no correlations between anagenesis in skeletal shape and the establishment of reproductive isolation. Apparently, anagenesis masks at least one speciation event that is apparent only in the isotopic evidence for a change in reproductive ecology. Although anagenetic trends have been widely cited as evidence for gradual speciation in planktic foraminifera and other microfossil groups, our data suggest that they should not always be considered to record either the tempo or mode of speciation.

Speciation was apparently uncoupled from morphological evolution in fohsellids because these evolutionary phenomena occurred in different phases of ontogeny. Gradual morphological changes were associated with the main phase of shell growth of both the ancestor and descendant species in the near-surface ocean. Reproductive isolation occurred when ancestral and descendant populations became established at different depths near the end of the life cycle. Morphological evolution may also be uncoupled from reproductive isolation in other organisms that experience very different selection pressures over the duration of their ontogenies, such as parasites with many hosts, species with multiple phases of metamorphosis, and organisms that broadcast their gametes.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology 9:390398.Google Scholar
Baker, C. 1983. Evolution and hybridization in the radiolarian genera Thecorythium and Lamprocyclas:. Paleobiology 9:341355.Google Scholar
Banner, F. T., and Lowry, F. M. D. 1985. The stratigraphical record of planktonic foraminifera and its evolutionary implications. Special Papers in Palaeontology 33:117130.Google Scholar
, A. W. H. 1982. Biology of planktonic foraminifera. pp. 5189In Buzas, M. A., Sen Gupta, B. K., and Broadhead, T. W., eds. Foraminifera—notes for a short course. University of Tennessee, Knoxville.Google Scholar
, A. W. H., and Ericson, D. B. 1963. Aspects of calcification in planktonic foraminifera. Annals of the New York Academy of Sciences 109:6581.Google Scholar
Berger, W. H. 1969. Ecologic patterns of living planktonic foraminifera. Deep-Sea Research 16:124.Google Scholar
Berger, W. H., et al. 1978. Stable isotopes in deep sea carbonates: box core ERDC-92, west equatorial Pacific. Oceanologica Acta 1:203216.Google Scholar
Berggren, W. A. 1971. Multiple phylogenetic zonations of the Cenozoic based on planktonic foraminifera. Proceedings of the II Planktonic Conference, Rome, Edizioni Tecnoscienza:4156.Google Scholar
Berggren, W. A. 1981. Neogene planktonic foraminiferal biostratigraphy and biogeography: Atlantic, Mediterranean, and Indo-Pacific regions. Proceedings of International Workshop on Pacific Neogene Biostratigraphy:111161. Osaka, Japan.Google Scholar
Berggren, W. A., et al. 1985. Neogene geochronology and chronostratigraphy. pp. 211260in Snelling, N. J., ed. The chronology of the geological record. Blackwell Scientific, Oxford.Google Scholar
Blow, W. H. 1979. The Cainozoic Foramininferida, Vols. I-III. E. J. Brill, Leiden, Netherlands.Google Scholar
Blow, W. H., and Banner, F. T. 1965. The morphology, taxonomy and biostratigraphy of Globorotalia barsanensis LeRoy, Globorotalia fohsi Cushman and Ellisor, and related taxa. Micropaleontology 12:286302.Google Scholar
Boersma, A., et al. 1979. Carbon and oxygen isotope variations at DSDP Site 384 (North Atlantic) and some paleotemperatures and carbon isotope variations in the Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 43:695717.Google Scholar
Bolli, H. M. 1967. The subspecies of Globorotalia fohsi Cushman and Ellisor and the zones based on them. Micropaleontology 13:502512.Google Scholar
Bolli, H. M. 1986. Evolutionary trends in planktic foraminifera from early Cretaceous to Recent, with special emphasis on selected Tertiary lineages. Bulletin of the Centres Recherche Exploration-Production Elf-Aquitaine 10:565577.Google Scholar
Bolli, H. M., and Saunders, J. B. 1985. Oligocene to Holocene low latitude planktic foraminifera. pp. 155262. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Bookstein, F. 1990. Introduction to methods of landmark analysis. pp. 215226In Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology, University of Michigan, Ann Arbor.Google Scholar
Caron, M., and Homewood, P. 1983. Evolution of early planktonic foraminifers. Marine Micropaleontology 7:435462.Google Scholar
Chaisson, W. P., and Leckie, R. M. 1993. High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific). Proceedings of the Ocean Drilling Program, Scientific Results 130:137178.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1993. Oxygen and carbon isotope stratigraphy of the middle Miocene, Holes 805B and 806B. Proceedings of the Ocean Drilling Program, Scientific Results 130:307322.Google Scholar
Curry, W. B., et al. 1983. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth and Planetary Science Letters 64:3343.Google Scholar
D'Hondt, S., and Zachos, J. C. 1993. On stable isotopic variation and earliest Paleocene planktonic foraminifera. Paleoceanography 8:527547.Google Scholar
Deuser, W. G. 1987. Seasonal variations in isotopic composition and deep-water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea: results from sediment-trap collections and their paleoceanographic significance. Journal of Foraminiferal Research 17:1427.CrossRefGoogle Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotope evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Marine Micropaleontology 3:175196.Google Scholar
Duplessy, J. -C., et al. 1981a. Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 33:946.Google Scholar
Duplessy, J. -C., et al. 1981b. Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213:12471250.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. W. H. Freeman, San Francisco.Google Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science 252:269324.Google Scholar
Erez, J., and Honjo, S. 1981. Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 33:129156.Google Scholar
Fairbanks, R. G., et al. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207:6163.CrossRefGoogle ScholarPubMed
Fairbanks, R. G., et al. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298:841844.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1992. Isotopic evidence for depth stratification and paleocology of Miocene planktonic foraminifera, western equatorial Pacific DSDP Site 289. pp. 117147In Tsuchi, R. and Ingle, J. C., eds. Pacific Neogene—Environment, evolution, and events. University of Tokyo Press, Tokyo.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1993. Miocene planktonic foraminifers at DSDP 289: depth stratification using isotopic differences. Proceedings of the Ocean Drilling Program, Scientific Results 130:323332.Google Scholar
Hart, M. B. 1980. A water-depth model for the evolution of the planktonic Foraminiferida. Nature 286:252254.Google Scholar
Hemleben, C., et al. 1989. Modern planktonic foraminifera. Springer, New York.Google Scholar
Hines, A. H. 1986. Larval problems and perspectives in life histories of marine invertebrates. Bulletin of Marine Science 39:506525.Google Scholar
Hodell, D. A., and Vayavananda, A. 1994. Early middle Miocene paleoceanography of the western equatorial Pacific (DSDP Site 289) and the evolution of Globorotalia (Fohsella). Marine Micropaleontology 22:279310.Google Scholar
Hunter, R. S. T., et al. 1988. Evolution and homeomorphy in the development of the Paleocene Planorotalites psuedomenardii and the Miocene Globorotalia (Globorotalia) margaritae lineages. Micropaleontology 31:181192.Google Scholar
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep sea cores: implications for macroevolution. Paleobiology 9:335363.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene planktonic foraminifera. Hutchinson Ross, Stroudsburg, Penn.Google Scholar
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatium. Paleobiology 12:175189.Google Scholar
Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Mathematical Geology 15:659672.Google Scholar
Lohmann, G. P. 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445457.Google Scholar
Lohmann, G. P., and Schweitzer, P. N. 1990. On eigenshape analysis. pp. 147165In Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology, University of Michigan, Ann Arbor.Google Scholar
Lynch, J. D. 1989. The gauge of speciation: on frequencies of modes of speciation. pp. 527553In Otte, D. and Endler, J. A., eds. Speciation and its consequences. Sinauer, Sunderland, Mass.Google Scholar
Malmgren, B. A., and Berggren, W. A. 1987. Evolutionary changes in some late Neogene planktonic foraminifera lineages and their relationships to paleoceanographic changes. Paleoceanography 2:445456.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP 284, southwest Pacific. Paleobiology 7:230240.Google Scholar
Malmgren, B. A., et al. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic Foraminifera. Paleobiology 9:377389.Google Scholar
Malmgren, B. A., et al. 1984. Species formation through punctuated gradualism in planktonic foraminifera. Science 225:317319.CrossRefGoogle ScholarPubMed
Norris, R. D. 1991. Parallel evolution of keel structure in planktic foraminifera. Journal of Foraminiferal Research 21:319331.Google Scholar
Norris, R. D., et al. 1993. Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella). Geology, 21:975978.Google Scholar
Norris, R. D., et al. 1994. Evolutionary ecology of Globorotalia (Globoconella) (planktic foraminifera). Marine Micropaleontology 23:121145.Google Scholar
Orr, W. N. 1967. Secondary calcification in the foraminiferal genus Globorotalia. Science 157:15541555.Google Scholar
Pearson, P. N. 1992. Survivorship analysis of fossil taxa when real-time extinction rates vary: the Paleogene planktonic foraminifera. Paleobiology 18:115131.Google Scholar
Pearson, P. N., et al. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multispecies isotope stratigraphy, DSDP Site 523, South Atlantic. Journal of Foraminiferal Research 23:123140.Google Scholar
Raup, D. M., and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonites Kosmoceras. Paleobiology 7:200215.CrossRefGoogle Scholar
Ravelo, A.C., and Fairbanks, R. 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography 7:815831.CrossRefGoogle Scholar
Ravelo, A.C., and Fairbanks, R. 1995. Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic. Journal of Foraminiferal Research 25:5374.Google Scholar
Schweitzer, P. N., and Lohmann, G. P. 1991. Ontogeny and habitat of modern menardiiform planktonic foraminifera. Journal of Foraminiferal Research 21:332346.Google Scholar
Shackleton, N. J., and Vincent, E. 1978. Oxygen and carbon isotope studies in Recent foraminifera from the southwest Indian Ocean. Marine Micropaleontology 3:113.Google Scholar
Spero, H. J. 1992. Do planktonic foraminifera accurately record shifts in the carbon isotopic composition of seawater Σ CO2? Marine Micropaleontology 19:275285.CrossRefGoogle Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktonic foraminifer Globigerinoides sacculifer: results for laboratory experiments. Marine Micropaleontology 22:193232.Google Scholar
Wilber, H. M. 1980. Complex life cycles. Annual Review of Ecology and Systematics 11:6793.Google Scholar