Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-02T18:06:54.691Z Has data issue: false hasContentIssue false

Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology

Published online by Cambridge University Press:  08 February 2016

Kathleen A. Ritterbush
Affiliation:
Earth Sciences Department, University of Southern California, 3651 Trousdale Parkway, ZHS 233, Los Angeles, California 90089, U.S.A. E-mail: [email protected]
David J. Bottjer
Affiliation:
Earth Sciences Department, University of Southern California, 3651 Trousdale Parkway, ZHS 233, Los Angeles, California 90089, U.S.A. E-mail: [email protected]

Abstract

The Westermann Morphospace method displays fundamental morphotypes and hypothesized life modes of measured ammonoid fossils in a ternary diagram. It quantitatively describes shell shape, without assumption of theoretical coiling laws, in a single, easy-to-read diagram. This allows direct comparison between data sets presented in Westermann Morphospace, making it an ideal tool to communicate morphology. By linking measured shells to hypothesized life modes, the diagram estimates ecospace occupation of the water column. Application of this new method is demonstrated with Mesozoic data sets from monographs. Temporal variation, intraspecies variation, and ontogenetic variation are considered. This method can address hypothetical ecospace occupation in collections with tight stratigraphic, lithologic, and abundance control, even when taxonomy is in dispute.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontological Society Special Papers 16 (16):126.Google Scholar
Appel, P. 2008. Trinity, Version 1.5. [Computer Program] Christian-Albrechts Universität (Germany), Institut für Geowissenschaften, Mineralogy. Available atwww.ifg.uni-kiel.de/339.htm.Google Scholar
Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Shindewolf, O. H., Sylvester-Bradley, P. C., and Wright, C. W. 1957. Mollusca 4, Cephalopoda, Ammonoidea. Part L of R. C. Moore, ed. Treatise on invertebrate paleontology Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746inTevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Bardhan, S., Shome, S., and Roy, P. 2007. Biogeography of Kutch ammonites during the latest Jurassic (Tithonian) and a global paleobiogeographic overview. Pp. 375392in Landman et al. 2007.Google Scholar
Batt, R. J. 1989. Ammonite shell morphotype distribution in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4:3242.CrossRefGoogle Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Bruhwiler, T., Goudemand, N., Galfetti, T., and Guex, J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–21.CrossRefGoogle Scholar
Burnaby, T. P. 1966. Allometric growth of ammonoid shells: a generalization of the logarithmic spiral. Nature 209:904906.CrossRefGoogle Scholar
Courville, P. 1992. Les Vascoceratinae et les Pseudotissotiinae (Ammonitina) D'Ashaka (NE Nigeria): relations avec leur environnement biosedimentaire. Bulletin des Centres de Recherches Exploration-Production, Elf Aquitaine 16:235457.Google Scholar
Cusack, M., Parkinson, D., Freer, A., Perez-Huerta, A., Fallick, A. E., and Curry, G. B. 2008. Oxygen isotope composition in Modiolus modiolus aragonite in the context of biological and crystallographic control. Mineral Magazine 72:569577.CrossRefGoogle Scholar
Dera, G., Neige, P., Dommergues, J., Fara, E., Laffont, R., and Pellenard, P. 2010. High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). Journal of the Geological Society, London 167:2133.CrossRefGoogle Scholar
Dommergues, J., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.CrossRefGoogle Scholar
Dommergues, J., Laurin, B., and Meister, C. 2001. The recovery and radiation of Early Jurassic ammonoids: morphologic versus palaeobiogeographical patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 165:195213.CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research 56:558559.CrossRefGoogle Scholar
Excel (Part of Microsoft Office Professional Plus 2007) [Computer Program] Microsoft 2006.Google Scholar
Gerber, S. 2011. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37:369382.CrossRefGoogle Scholar
Gerber, S., Neige, P., and Eble, G. J. 2007. Combining ontogenetic and evolutionary scales of morphological disparity: a study of early Jurassic ammonites. Evolution and Development 9:472482.CrossRefGoogle ScholarPubMed
Gerber, S., Eble, G. J., and Neige, P. 2008. Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62:14501457.CrossRefGoogle ScholarPubMed
Glover, T., and Mitchell, K. 2002. An introduction to biostatistics. McGraw-Hill, New York.Google Scholar
Guex, J. 1995. Ammonites hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires de Géologie (Lausanne), No. 27.Google Scholar
Guex, J. 2001. Environmental stress and atavism in ammonoid evolution. Eclogae Geologicae Helvetiae 94:321328.Google Scholar
Guex, J. 2006. Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth and Planetary Science Letters 242:240253.CrossRefGoogle Scholar
Guex, J., Bartolini, A., Atudorei, V., and Taylor, D. 2004. High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters 225:2941.CrossRefGoogle Scholar
Hammer, Ø. and Bucher, H. 2006. Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontological Research 10:9196.CrossRefGoogle Scholar
Hewitt, R. A. 1996. Architecture and strength of the ammonoid shell. Pp. 297336in Landman et al. 1996.Google Scholar
Jacobs, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18:203220.CrossRefGoogle Scholar
Jacobs, D. K., and Chamberlain, J. A. Jr. 1996. Buoyancy and hydrodynamics in ammonoids. Pp. 170220in Landman et al. 1996.Google Scholar
Jenks, J. F., Spielmann, J. A., and Lucas, S. G. 2007. InLucas, S. G. and Spielmann, J. A., eds. Triassic of the American West. New Mexico Museum of Natural History and Science Bulletin 40:3380.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.CrossRefGoogle Scholar
Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P. J. 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:201222.CrossRefGoogle Scholar
Korn, D. 2000. Morphospace occupation of ammonoids over the Devonian-Carboniferous boundary. Paläontologische Zeitschrift 74:247257.CrossRefGoogle Scholar
Korn, D., and Klug, C. 2007. Conch form analysis, variability, morphological disparity, and mode of life in the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). Pp. 5782in Landman et al. 2007.Google Scholar
Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P. 2011. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:7072.CrossRefGoogle ScholarPubMed
Kulicki, C., Tanabe, K., and Landman, N. H. 2007. Primary structure of the connecting ring of ammonoids and its preservation. Acta Palaeontologica Polonica 52:823827.Google Scholar
Landman, N. H., Davis, R. A., and Mapes, R. H., eds. 2007. Cephalopods present and past. Springer, Dordrecht, The Netherlands.Google Scholar
Landman, N. H., Tanabe, K., and Davis, R. A., eds. 1996. Ammonoid paleobiology. Vol. 13 of F. G. Stehli and D. S. Jones, eds. Topics in geobiology. Plenum, New York.Google Scholar
Lehrmann, D. J., Ramezani, J., Bowring, S. A., Martin, M. W., Montgomery, P., Enos, P., Payne, J. L., Orchard, M. J., Hongmei, W., and Jiayong, W. 2006. Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China. Geology 34:10531056.CrossRefGoogle Scholar
Longridge, L. M., Palfy, J., Smith, P. L., and Tipper, H. W. 2008. Middle and late Hettangian (Early Jurassic) ammonites from the Queen Charlotte Islands, British Columbia, Canada. Revue de Paléobiologie 27:191248.Google Scholar
Macellari, C. E. 1984. Late Cretaceous stratigraphy, sedimentology, and macropaleontology of Seymour Island, Antarctic Peninsula, Vols. I and II. Ph.D. dissertation. Ohio State University, Columbus.Google Scholar
Macellari, C. E. 1986. Late Campanian-Maastrichtian ammonoid fauna from Seymour Island (Antarctic Peninsula). Paleontological Society Memoir 18. Journal of Paleontology 60 (Suppl. to No. 2):155.CrossRefGoogle Scholar
McGhee, G. 2007. The geometry of evolution. Cambridge University Press, Cambridge.Google Scholar
McGowan, A. 2004. The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology 30:369.2.0.CO;2>CrossRefGoogle Scholar
Monnet, C., and Bucher, H. 2005. New Middle and Late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Fossils and Strata 52:1120.CrossRefGoogle Scholar
Moriya, K., Nishi, H., Kawahata, H., Tanabe, K., and Takayangi, Y. 2003. Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167170.2.0.CO;2>CrossRefGoogle Scholar
Mutvei, H., and Dunca, E. 2007. Connecting ring ultrastructure in the Jurassic ammonoid Quenstedtoceras with discussion on mode of life of ammonoids. Pp. 239253in Landman et al. 2007.Google Scholar
Okamoto, T. 1996. Theoretical modeling of ammonoid morphology. Pp. 225249in Landman et al. 1996.Google Scholar
Poulton, T. P. 1991. Hettangian through Aalenian (Jurassic) guide fossils and biostratigraphy, northern Yukon and adjacent Northwest Territories. Geological Survey of Canada Bulletin 410.CrossRefGoogle Scholar
Powers, C. M., and Bottjer, D. J. 2007. Bryozoan paleoecology indicates mid-Phanerozoic extinctions were the product of long-term environmental stress. Geology 35:995998.CrossRefGoogle Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science 147:12941295.CrossRefGoogle ScholarPubMed
Saunders, W. B., Greenfest-Allen, E., and Work, D. M. 2008. Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology 34:128154.CrossRefGoogle Scholar
Saunders, W. B., and Shapiro, E. A. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.CrossRefGoogle Scholar
Schaltegger, U., Guex, J., Bartolini, A., Schoene, B., and Ovtcharova, M. 2008. Precise U-Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters 267:266275.CrossRefGoogle Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387390.CrossRefGoogle Scholar
Seibel, B. A. 2007. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology 210:111.CrossRefGoogle ScholarPubMed
Seibel, B. A., and Drazen, J. C. 2007. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society of London B 29:20612078. doi: 10.1098/rstb.2007.2101.CrossRefGoogle Scholar
Selden, P. A., ed. 2009. Mollusca 4, Vol. 2. Carboniferous and Permian Ammonoidea. Part L (Revised) of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Smith, P. 1986. The implications of data base management systems to paleontology: a discussion of Jurassic ammonoid data. Journal of Paleontology 60:327340.CrossRefGoogle Scholar
Tozer, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin 467.CrossRefGoogle Scholar
Urdy, S., Goudemand, N., Bucher, H., and Chirat, R. 2010a. Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. Journal of Experimental Zoology (Molecular and Developmental Evolution) 314B:123.Google Scholar
Urdy, S., Goudemand, N., Bucher, H., and Chirat, R. 2010b. Growth-dependent phenotypic variation of molluscan shells: implications for allometric data interpretation. Journal of Experimental Zoology (Molecular and Developmental Evolution) 314B:123.Google Scholar
Vance, R. R. 1973. On reproductive strategies in marine benthic invertebrates. American Naturalist 107:339352.CrossRefGoogle Scholar
von Hillebrandt, A. 1990. The Triassic/Jurassic boundary in nothern Chile. Cahiers de la Universite Catholique Lyon, série Science 3:2753.Google Scholar
von Hillebrandt, A., and Krystyn, L. 2009. On the oldest Jurassic ammonites of Europe (Northern Calcareous Alps, Austria) and their global significance. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 253:163195.CrossRefGoogle Scholar
Ward, P., and Signor, P. W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 92:183198.CrossRefGoogle Scholar
Westermann, G. E. G. 1992. The Jurassic of the Circum-Pacific. World and Regional Geology, Vol. 3. Cambridge University Press, New York.Google Scholar
Westermann, G. E. G. 1996. Ammonoid life and habit. Pp. 607707in Landman et al. 1996.Google Scholar
Whiteside, J. H., and Ward, P. 2011. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology 39:99102.CrossRefGoogle Scholar
Wiedmann, J. 1973. Evolution or revolution of ammonoids at Mesozoic system boundaries. Biological Reviews 48:159194.CrossRefGoogle Scholar
Yacobucci, M. M. 2003. Controls on shell shape in acanthoceratid ammonites from the Cenomanian-Turonian Western Interior Seaway. Pp. 195223inHarries, P. J. and Geary, D. H., eds. 2003. High-resolution approaches in stratigraphic paleontology. Topics in geobiology, Vol. 21. Plenum Press, New York.Google Scholar
Yacobucci, M. M. 2004. Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretaceous Research 25:927944.CrossRefGoogle Scholar