Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T20:23:02.488Z Has data issue: false hasContentIssue false

Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas

Published online by Cambridge University Press:  14 July 2015

Philip M. Novack-Gottshall*
Affiliation:
Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708-0338

Abstract

The process of evolution hinders our ability to make large-scale ecological comparisons—such as those encompassing marine biotas spanning the Phanerozoic—because the compared entities are taxonomically and morphologically dissimilar. One solution is to focus instead on life habits, which are repeatedly discovered by taxa because of convergence. Such an approach is applied to a comparison of the ecological diversity of Paleozoic (Cambrian–Devonian) and modern marine biotas from deep-subtidal, soft-substrate habitats. Ecological diversity (richness and disparity) is operationalized by using a standardized ecospace framework that can be applied equally to extant and extinct organisms and is logically independent of taxonomy. Because individual states in the framework are chosen a priori and not customized for particular taxa, the framework fulfills the requirements of a universal theoretical ecospace. Unique ecological life habits can be recognized as each discrete, n-dimensional combination of character states in the framework. Although the basic unit of analysis remains the organism, the framework can be applied to other entities—species, clades, or multispecies assemblages—for the study of comparative paleoecology and ecology. Because the framework is quantifiable, it is amenable to analytical techniques used for morphological disparity. Using these methods, I demonstrate that the composite Paleozoic biota is approximately as rich in life habits as the sampled modern biota, but that the life habits in the modern biota are significantly more disparate than those in the Paleozoic; these results are robust to taphonomic standardization. Despite broadly similar distributions of life habits revealed by multivariate ordination, the modern biota is composed of life habits that are significantly enriched, among others, in mobility, infaunality, carnivory, and exploitation of other organisms (or structures) for occupation of microhabitats.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M. 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios 9:516545.CrossRefGoogle Scholar
Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259277.CrossRefGoogle Scholar
Alexander, R. M. 1983. Animal mechanics. Blackwell Scientific, Boston.Google Scholar
Alexander, R. M. 1990. Dynamics of dinosaurs. Columbia University Press, New York.Google Scholar
Alfaro, M. E., Bolnick, D. I., and Wainwright, P. C. 2004. Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism. Evolution 58:495503.Google Scholar
Alfaro, M. E., Bolnick, D. I., and Wainwright, P. C. 2005. Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. American Naturalist 165:E140E154.Google Scholar
Arnold, S. J. 1983. Morphology, performance and fitness. American Zoologist 23:347361.CrossRefGoogle Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.Google Scholar
Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. 1992. Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., Stayton, C. T., and Chapman, R. E. 2003. Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology 29:5270.Google Scholar
Benz, G. W., and Collins, D. E., eds. 1998. Aquatic fauna in peril: the southeastern perspective. Southeast Aquatic Research Institute Special Publication 1. Lenz Design and Communications, Decatur, Ga. Google Scholar
Bock, W. J. and von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution 19:269299.Google Scholar
Bonner, J. T. 2006. Why size matters: from bacteria to blue whales. Princeton University Press, Princeton, N.J. Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.Google Scholar
Bottjer, D. J., Schubert, J. K., and Droser, M. L. 1996. Comparative evolutionary ecology: assessing the changing ecology of the past. In Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication 102:113.CrossRefGoogle Scholar
Boucot, A. J. 1990. Evolutionary paleobiology of behavior and coevolution. Elsevier, New York.Google Scholar
Brandon, R. 1984. The levels of selection. Pp. 133141 in Brandon, R. and Burian, R., eds. Genes, organisms, populations: controversies over the units of selection. MIT Press, Cambridge.Google Scholar
Bretsky, P. W. 1968. Evolution of Paleozoic marine invertebrate communities. Science 159:12311233.CrossRefGoogle ScholarPubMed
Brett, C. E. 1984. Autecology of Silurian pelmatozoan echinoderms. In Bassett, M. G. and Lawson, J. D., eds. Autecology of Silurian organisms. Special Papers in Palaeontology 32:87120.Google Scholar
Brett, C. E. 1990. Obrution deposits. Pp. 239243 in Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology: a synthesis. Blackwell Scientific, London.Google Scholar
Brett, C. E., and Baird, G. C. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207227.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Brown, J. H., and Davidson, D. W. 1977. Competition between seed-eating rodents and ants in desert ecosystems. Science 196:880882.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.CrossRefGoogle Scholar
Chapman, R. E., Rasskin-Gutman, D., and Weishampel, D. B. 1996. Exploring the evolutionary history of a group using multiple morphospaces of varying complexity and philosophy. In Repetski, J. E., ed. Sixth North American Paleontological Convention, Abstracts of papers. Paleontological Society Special Publication 8:66.Google Scholar
Ciampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development 4:117.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Collar, D. C., Near, T. J., and Wainwright, P. C. 2005. Comparative analysis of morphological disparity: does disparity accumulate at the same rate in two lineages of centrarchid fishes? Evolution 59:17831794.Google ScholarPubMed
Coyne, J. A., and Orr, H. A. 2004. Speciation. Sinauer, New York.Google Scholar
Damuth, J., Jablonski, D., Harris, J. A., Potts, R., Stucky, R. K., Sues, H.-D., and Weishampel, D. B. 1992. Taxon-free characterization of animal communities. Pp. 183203 in Behrensmeyer, et al. 1992.Google Scholar
Darwin, C. 1875. Insectivorous plants. D. Appleton, New York.CrossRefGoogle Scholar
Day, J. H., Field, J. G., and Montgomery, M. P. 1971. The use of numerical methods to determine the distribution of the benthic fauna across the continental shelf of North Carolina. Journal of Animal Ecology 40:93125.Google Scholar
Díaz, S., and Cabido, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16:646655.CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:85852.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1993. Trends and patterns in Phanerozoic ichnofacies. Annual Review of Earth and Planetary Sciences 21:204225.Google Scholar
Droser, M. L., Bottjer, D. J., and Sheehan, P. M. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology 25:167170.2.3.CO;2>CrossRefGoogle Scholar
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.Google Scholar
Efron, B. and Tibshirani, R. J. 1993. An introduction to the bootstrap. Chapman and Hall, New York.Google Scholar
Elton, C. S., and Miller, R. S. 1954. The ecological survey of animal communities: with a practical system of classifying habitats by structural characters. Journal of Ecology 42:460496.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:11771186.Google Scholar
Faith, D. P., Minchin, P. R., and Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:5768.Google Scholar
Fauchald, K., and Jumars, P. A. 1979. The diet of worms: a study of polychaetes feeding guilds. Oceanography and Marine Biology Annual Review 17:193284.Google Scholar
Felsenstein, J. 1985a. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783791.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1985b. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Fenchel, T. M. 1978. The ecology of micro- and meiobenthos. Annual Review of Ecology and Systematics 9:99121.Google Scholar
Foote, M. 1991a. Analysis of morphological data. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:5986. Paleontological Society, Knoxville, Tenn. Google Scholar
Foote, M. 1991b. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1993a. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1993b. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foote, M. 1996a. Models of morphological diversification. Pp. 6286 in Jablonski, D., Erwin, D. H., and Lipps, J., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1996b. Ecological controls in the evolutionary recovery of post-Paleozoic crinoids. Science 274:14922495.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs No. 1. Paleobiology 25(Suppl. to No. 2).Google Scholar
Foote, M., and Gould, S. J. 1992. Cambrian and Recent morphological disparity. Science 258:1816.CrossRefGoogle ScholarPubMed
Garland, T. Jr., and Losos, J. B. 1994. Ecological morphology in locomotor performance in squamate reptiles. Pp. 240302 in Wainwright, P. C. and Reilly, S. M. 1994.Google Scholar
Gaston, K. J., and Blackburn, T. M. 1996. Global scale macroecology: interactions between population size, geographic range size, and body size in the Anseriformes. Journal of Animal Ecology 65:701714.Google Scholar
Gotelli, N. J., and Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.Google Scholar
Gould, S. J. 1989. Wonderful life: the Burgess Shale and the nature of history. W. W. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.Google Scholar
Grant, P. R. 1999. Ecology and evolution of Darwin's finches. Princeton University Press, Princeton, N.J. Google Scholar
Hackney, C. T., Adams, M., and Martin, W., eds. 1992. Biodiversity of the southeastern United States: aquatic communities. Wiley, New York.Google Scholar
Hansen, T. A. 1988. Early Tertiary radiation of marine molluscs and the long-term effects of the Cretaceous-Tertiary extinction. Paleobiology 14:3751.CrossRefGoogle Scholar
Harmon, L. J., Schulte, J. A. II, Larson, A., Losos, J. B. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961964.CrossRefGoogle ScholarPubMed
Harvey, P. H., and Pagel, D. M. 1991. The comparative method in evolutionary biology. Oxford University Press, New York.Google Scholar
Hickman, C. S. 1988. Analysis of form and function in fossils. American Zoologist 28:775793.Google Scholar
Hickman, C. S. 1993. Theoretical design space: a new program for the analysis of structural diversity. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 190:169182.Google Scholar
Holland, P. 2004. The ups and downs of a sea anemone. Science 304:12551256.Google Scholar
Hungate, R. E. 1975. The rumen microbial ecosystem. Annual Review of Ecology and Systematics 6:3966.Google Scholar
Hunt, O. D. 1925. The food of the bottom fauna of the Plymouth fishing grounds. Journal of the Marine Biological Association, UK 13:560599.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 43:145159.Google Scholar
Hutchinson, G. E. 1965. The ecological theater and the evolutionary play. Yale University Press, New Haven, Conn. Google Scholar
Irschick, D. J. 2002. Evolutionary approaches for studying functional morphology: examples from studies of performance capacity. Integrative and Comparative Biology 42:278290.CrossRefGoogle ScholarPubMed
Irschick, D. J. 2003. Measuring performance in nature: implications for studies of fitness within populations. Integrative and Comparative Biology 43:396407.Google Scholar
Jablonski, D. 1986a. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:13271330.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.Google Scholar
Janzen, D. H. 1977. Why fruits rot, seeds mold, and meat spoils. American Naturalist 111:691713.Google Scholar
Jennings, J. B. 1965. Feeding, digestion and assimilation in animals. Pergamon, New York.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24:155176.Google Scholar
Kenkel, N. C., and Orlóci, L. 1986. Applying metric and non-metric multidimensional scaling to ecological studies: some new results. Ecology 67:919928.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Koehl, M. A. 1981. Feeding at low Reynolds number by copepods. Lectures on Mathematics in the Life Sciences 14:89117.Google Scholar
Koehl, M. A., and Strickler, J. R. 1981. Copepod feeding currents: food capture at low Reynolds number. Limnology and Oceanography 26:10621073.Google Scholar
Kosnik, M. A. 2005. Changes in Late Cretaceous–early Tertiary benthic marine assemblages: analyses from the North American coastal plain shallow shelf. Paleobiology 31:459479.CrossRefGoogle Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:10911094.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. Barbour, and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Labandeira, C. C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science 261:310315.Google Scholar
Levinton, J. S., and Bambach, R. K. 1975. A comparative study of Silurian and Recent deposit-feeding bivalve communities. Paleobiology 1:97124.Google Scholar
Liow, L. H. 2004. A test of Simpson's “Rule of the survival of the relatively unspecialized” using fossil crinoids. American Naturalist 164:431443.Google Scholar
Lockwood, R. 2004. The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology 30:507521.Google Scholar
Long, B. G., Poiner, I. R., and Wassenberg, T. J. 1995. Distribution, biomass and community structure of megabenthos of the Gulf of Carpentaria, Australia. Marine Ecology Progress Series 129:127139.Google Scholar
Losos, J. B., Jackman, T. R., Larson, A., de Queiroz, K., and Rodríguez-Schettino, L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:21152118.Google Scholar
Losos, J. B., Leal, M., Glor, R. E., de Queiroz, K., Hertz, P. E., Roudriguez Schettino, L., Chamizo Lara, A., Jackman, T. R., and Larson, A. 2003. Niche lability in the evolution of a Caribbean lizard community. Nature 424:542545.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Lynch, M. P., Boesch, D. F., Ruzecki, E. P., Grant, G. C., and Ellison, R. L. 1979. Middle Atlantic outer continental shelf environmental studies, Vol. 2-A. Chemical and biological benchmark studies. Virginia Institute of Marine Studies with the Bureau of Land Management, Report BLM-ST-78-27.Google Scholar
Madin, J. S., Alroy, J., Aberhan, M., Fürsich, F. T., Kiessling, W., Kosnik, M. A., and Wagner, P. J. 2006. Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science 312:897900.Google Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J. Google Scholar
Marks, C. O., and Lechowicz, M. J. 2006. Alternative designs and the evolution of functional diversity. American Naturalist 167:5566.CrossRefGoogle ScholarPubMed
Martin, W. H., Boyce, S. G., and Echternacht, A. C., eds. 1993a. Biodiversity of the southeastern United States: lowland terrestrial communities. Wiley, New York.Google Scholar
Martin, W. H., Boyce, S. G., and Echternacht, A. C., eds 1993b. Biodiversity of the southeastern United States: upland terrestrial communities. Wiley, New York.Google Scholar
Maurer, B. A. 1999. Untangling ecological complexity. University of Chicago Press, Chicago.Google Scholar
McClain, C. R., Johnson, N. A., and Rex, M. A. 2004. Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages. Evolution 58:338348.Google Scholar
McGhee, G. R. Jr. 1999. Theoretical morphology: the concept and its application. Columbia University Press, New York.Google Scholar
McPeek, M. A. 2000. Predisposed to adapt? Clade-level differences in characters affecting swimming performance in damselflies. Evolution 2072–2080.Google Scholar
McShea, D. W. 1993. Arguments, tests, and the Burgess Shale—a commentary on the debate. Paleobiology 19:399402.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
McShea, D. W. 1998. Dynamics of diversification in state space. Pp. 91108 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Merritt, R. W., and Cummins, K. W. 1996. Trophic relations of macroinvertebrates. Pp. 453474 in Hauer, F. R. and Lambertiuu, G. A., eds. Methods in stream ecology. Academic Press, New York.Google Scholar
Miller, A. I. 1988. Spatio-temporal transitions in Paleozoic Bivalvia: an analysis of North American fossil assemblages. Historical Biology 1:251273.Google Scholar
Miller, A. I. 1990. Bivalves. Pp. 143161 in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
Miller, A. I., and Foote, M. 2003. Increased longevities of post-Paleozoic marine genera after mass extinctions. Science 302:10301032.Google Scholar
Minchin, P. R. 1987. An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 71:145156.Google Scholar
Moore, J., and Willmer, P. 1997. Convergent evolution in invertebrates. Biological Reviews 72:160.Google Scholar
Müller, K. J., and Walossek, D. 1987. Morphology, ontogeny, and life-habit of Agnostus pisiformis (Linnaeus, 1757) from the Upper Cambrian of Sweden. Fossils and Strata 19.Google Scholar
Norell, M. A., Makovicky, P. J., and Currie, P. J. 2001. The beaks of ostrich dinosaurs. Nature 412:873874.Google Scholar
Novack-Gottshall, P. M. 2004. Ecological disparity of deep-subtidal, soft-substrate assemblages during the Cambrian through Devonian. Geological Society of America Abstracts with Programs 36:457.Google Scholar
Novack-Gottshall, P. M., and McShea, D. W. 2003. Quantifying ecological disparity: Comparative paleoecology of Ordovician and Recent marine assemblages. Geological Society of America Abstracts with Programs 35:589.Google Scholar
Oksanen, J. 2006. Vegan: R functions for vegetation ecologists, Version 1. 8–3. http://cc.oulu.fi/∼jarioksa/softhelp/vegan.html Google Scholar
Peres-Neto, P. R., and Jackson, D. A. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169178.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.Google Scholar
Peterson, A. T., Soberón, J., and Sánchez-Cordero, V. 1999. Conservatism of ecological niches in evolutionary time. Science 285:12651267.Google Scholar
Pianka, E. R. 2000. Evolutionary ecology, 6th ed. Benjamin Cummings, New York.Google Scholar
Pie, M. R., and Weitz, J. S. 2005. A null model of morphospace occupation. American Naturalist 166:E1E13.Google Scholar
Pietsch, T. W. 1976. Dimorphism, parasitism and sex: reproductive strategies among deepsea ceratioid anglerfishes. Copeia 1976:781793.Google Scholar
Pietsch, T. W. 2005. Dimorphism, parasitism and sex revisited: modes of reproduction among deep-sea ceratioid anglerfishes (Teleostei: Lophiiformes). Ichthyological Research 52:207236.Google Scholar
Plante, C. J., Jumars, P. A., and Baross, J. A. 1990. Digestive associations between marine detritivores and bacteria. Annual Review of Ecology and Systematics 21:93127.Google Scholar
Plotnick, R. E., and Baumiller, T. K. 2000. Invention by evolution: functional analysis in paleobiology. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):305323.Google Scholar
Pojeta, J. Jr. 1971. Review of Ordovician pelecypods. U.S. Geological Survey Professional Paper 695.Google Scholar
R Development Core Team, 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org.Google Scholar
Radenbaugh, T. A., and McKinney, F. K. 1998. Comparison of the structure of a Mississippian and a Holocene pen shell assemblage. Palaios 13:5269.CrossRefGoogle Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science 147:12941295.Google Scholar
Reich, P. B., Tilman, D., Naeem, S., Ellsworth, D., Knops, J., Craine, J., Wedin, D., and Trost, J. 2004. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences USA 101:1010110106.Google Scholar
Reichman, O. J. 1979. Introduction to the symposium: competition between distantly related taxa. American Zoologist 19:1027.Google Scholar
Retallack, G. 2004. Ecological polarities of mid-Cenozoic fossil plants and animals from central Oregon. Paleobiology 30:561588.Google Scholar
Ricklefs, R. E., and Miles, D. B. 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. Pp. 1341 in Wainwright, P. C. and Reilly, S. M. 1994.Google Scholar
Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37:317350.Google Scholar
Rubinoff, D., and Haines, W. P. 2005. Web-spinning caterpillar stalks snails. Science 309:575.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. British Journal for the Philosophy of Science 15:2740.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.Google Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.Google Scholar
Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, New York.Google Scholar
Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, New York.Google Scholar
Schoener, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.Google Scholar
Schopf, T. J. M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology 4:261270.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.Google Scholar
Seilacher, A. 2005. Whale barnacles: exaptational access to a forbidden paradise. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency Paleobiology 31(Suppl. to No. 2):2735.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of marine fossil families. Milwaukee Public Museum Contributions to Biology and Geology 51.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletin of American Paleontolgy 363.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp 153190 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Simberloff, D. S., and Dayan, T. 1991. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics 22:115143.Google Scholar
Smith, L. H., and Lieberman, B. S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian Radiation. Paleobiology 25:459470.Google Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. K. M., Hadly, E. A., Jablonski, D., Jones, K. E., Kaufman, D. M., Marquet, P. A., Maurer, B. A., Niklas, K. J., Porter, W. P., Roy, K., Tiffney, B., and Willig, M. R. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163:672691.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. Journal of Paleontology 42:214229.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology 46:165212.Google Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
Stayton, C. T. 2006. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824841.Google Scholar
Lofgren, S. Stockmeyer, Plotnick, R. E., and Wagner, P. J. 2003. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 2003:349368.Google Scholar
Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. 1996. Phylogenetic inference. Pp. 407514 in Hillis, D. M., Moritz, C., and Mable, B. K., eds. Molecular systematics, 2d ed. Sinauer, Sunderland, Mass. Google Scholar
Taylor, P. D., and Wilson, M. A. 2002. A new terminology for marine organisms inhabiting hard substrates. Palaios 17:522525.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of the marine benthos. Pp. 479625 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Thomas, R. D. K., and Reif, W.-E. 1993. The skeleton space: a finite set of organic designs. Evolution 47:341360.Google Scholar
Thomas, R. D. K., Shearman, R. M., and Stewart, G. W. 2000. Evolutionary exploitation of design options by the first animals with hard skeletons. Science 288:12391242.Google Scholar
Thorson, G. 1957. Bottom communities. Pp. 461534 in Hedgpeth, J. W., ed. Treatise on marine ecology and paleoecology, Vol. 1. Ecology. Geological Society of America Memoir 67.Google Scholar
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:13001302.Google Scholar
Turpaeva, E. P. 1957. Food interrelationships of dominant species in marine benthic biocoenoses. Transactions of the Institute of Oceanology (Marine Biology) 20:137148.Google Scholar
Underwood, A. J. 1997. Experiments in ecology: their logical analysis and interpretation using analysis of variance. Cambridge University Press, New York.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Upper Saddle River, N.J. Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.Google Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10:190194.Google Scholar
Valentine, J. W., and Jablonski, D. 1986. Mass extinctions: sensitivity of marine larval types. Proceedings of the National Academy of Sciences USA 83:69126914.Google Scholar
Valentine, J. W., Tiffney, B. H., and Sepkoski, J. J. Jr. 1991. Evolutionary dynamics of plants and animals: a comparative approach. Palaios 6:8188.Google Scholar
Van Valen, L. M. 1973. Are categories in different phyla comparable? Taxon 22:333373.Google Scholar
Van Valen, L. M. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.Google Scholar
Van Valen, L. M. 1978. Arborescent animals and other colonoids. Nature 276:318.CrossRefGoogle Scholar
Van Valkenburgh, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology 11:406428.Google Scholar
Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155173.Google Scholar
Van Valkenburgh, B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Canidae): evolutionary interactions among sympatric predators. Paleobiology 17:340362.Google Scholar
Van Valkenburgh, B. 1994. Extinction and replacement among predatory mammals in the North American Late Eocene and Oligocene: tracking a paleoguild over twelve million years. Historical Biology 8:129150.Google Scholar
Van Valkenburgh, B., and Molnar, R. E. 2002. Dinosaurian and mammalian predators compared. Paleobiology 28:527543.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J. Google Scholar
Vermeij, G. J. 1999. Inequality and the directionality of history. American Naturalist 153:243253.Google Scholar
Vermeij, G. J., and Lindberg, D. R. 2000. Delayed herbivory and the assembly of marine benthic ecosystems. Paleobiology 26:419430.Google Scholar
Villier, L., and Korn, D. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.Google Scholar
Vogel, S. 1994. Life in moving fluids, 2d ed. Princeton University Press, Princeton, N.J. Google Scholar
Vogel, S. 2003. Comparative biomechanics: life's physical world. Princeton University Press, Princeton, N.J. Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115150.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Wainwright, P. C. 1994. Functional morphology as a tool in ecological research. Pp. 4259 in Wainwright, P. C. and Reilly, S. M. 1994.Google Scholar
Wainwright, P. C., and Reilly, S. M., eds. 1994. Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago.Google Scholar
Wainwright, P. C., Alfaro, M. E., Bolnick, D. I., and Hulsey, C. D. 2005. Many-to-one mapping of form to function: a general principle in organismal design? Integrative and Comparative Biology 45:256262.Google Scholar
Walker, K. R. 1972. Trophic analysis: a method for studying the function of ancient communities. Journal of Paleontology 46:8293.Google Scholar
Walker, K. W., and Bambach, R. K. 1974. Feeding by benthic invertebrates: classification and terminology for paleoecological analysis. Lethaia 7:6778.CrossRefGoogle Scholar
Walker, K. W., and Laporte, L. F. 1970. Congruent fossil communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology 44:928944.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475505.Google Scholar
West, R. R. 1976. Comparison of seven lingulid communities. Pp. 171192 in Scott, R. W. and West, R. R., eds. Structure and classification of paleocommunities. Dowden, Hutchinson, and Ross, Stroudsburg, Penn. Google Scholar
West, R. R. 1977. Organism-substrate relations: terminology for ecology and palaeoecology. Lethaia 10:7182.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.Google Scholar
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society 65:455500.Google Scholar
Wills, M. A. 2002. Morphological disparity: a primer. In Adrain, J. M., Edgecomb, G. D., and Lieberman, B. S., eds. Fossils, phylogeny, and form: an analytical approach. Topics in Geobiology 19:55144. Springer, New York.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.Google Scholar
Winemiller, K. O. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61:343365.Google Scholar
Wing, S. L. 1988. Taxon-free paleoecological analysis of Eocene megafloras from Wyoming. American Journal of Botany 75:120.Google Scholar
Wing, S. L., and DiMichele, W. A. 1992. Taxon-free characterization of animal communities. Pp. 183203 in Behrensmeyer, et al. 1992.Google Scholar
Yonge, C. M. 1928. Feeding mechanisms in the invertebrates. Biological Reviews and Biological Proceedings of the Cambridge Philosophical Society 3:2176.Google Scholar
Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K. 1968. The composition and structure of Lower Silurian marine communities. Lethaia 1:127.Google Scholar
Supplementary material: PDF

Novack-Gottshall supplementary material

Appendix

Download Novack-Gottshall supplementary material(PDF)
PDF 114.8 KB