Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T21:59:03.587Z Has data issue: false hasContentIssue false

Understanding the appearance of heterospory and derived plant reproductive strategies in the Devonian

Published online by Cambridge University Press:  28 January 2022

Andrew B. Leslie*
Affiliation:
Geological Sciences Department, Stanford University, Stanford, California 94305, U.S.A. E-mail: [email protected]
Nikole K. Bonacorsi
Affiliation:
Department of Biology, Hamilton College, Clinton, New York 13323, U.S.A. E-mail: [email protected]
*
*Corresponding author.

Abstract

The evolution of different spore size classes, or heterospory, is a fundamental reproductive innovation in land plants. The appearance of heterospory is particularly notable during the Devonian, when most known origins of the trait occur. Here we provide a perspective on the evolution of heterospory during this time interval, particularly from the late Early Devonian through the Middle Devonian (Emsian to Givetian Stages; 408–383 Ma), which shows an unusually high concentration of heterospory origins. We use theoretical considerations and compilations of fossil and extant spore sizes to suggest that the basic features of most heterosporous lineages, large spores and gametophytes that mature within the spore wall, are difficult to evolve in combination, because large spores disperse poorly but small spores cannot support a functional gametophyte developing within their walls; evolving spores between 100 and 200 microns in diameter appears to represent a particularly important barrier for the evolution of heterospory. We then discuss why this barrier may have been lower in the Devonian, noting that the appearance and spread of heterospory is coincident with the emergence of peat-accumulating wetland habitats. We suggest that more widespread wetland habitats would have generally lowered barriers to the evolution of heterospory by reducing dispersal limitation in larger spores. Ultimately, we suggest that the initial evolution of heterospory may be explained by major changes in sedimentology, thought to have been driven by plant evolution itself, that increased the diversity of terrestrial depositional environments and led to a greater number of habitats where large spores could be successful.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Algeo, T. J., and Scheckler, S. E.. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London B 353:113130.CrossRefGoogle Scholar
Andrews, H. N., Gensel, P. G., and Forbes, W. H.. 1974. An apparently heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology 17:387408.Google Scholar
Arditti, J., and Ghani, A. K.. 2000. Tansley Review No. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145:367421.CrossRefGoogle ScholarPubMed
Atallah, N. M., and Banks, J. A.. 2015. Reproduction and the pheromonal regulation of sex type in fern gametophytes. Frontiers in Plant Science 6:100.CrossRefGoogle ScholarPubMed
Bateman, R. M. 1991. Palaeobiological and phylogenetic implications of anatomically-preserved Archaeocalamites from the Dinantian of Oxroad Bay and Loch Humphrey Burn, southern Scotland. Palaeontographica Abteilung B 223:159.Google Scholar
Bateman, R. M. 1992. Morphometric reconstruction, palaeobiology and phylogeny of Oxroadia gracilis ALVIN emend. and O. conferta sp. nov. Anatomically-preserved rhizomorphic lycopsids from the Dinantian of Oxroad Bay, SE Scotland. Palaeontographica Abteilung B 228:29103.Google Scholar
Bateman, R. M., and DiMichele, W. A. 1994. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews 69:345417.CrossRefGoogle Scholar
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P., Speck, T., and Stein, W. E.. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics 29:263292.CrossRefGoogle Scholar
Berry, C. M., and Fairon-Demaret, M.. 2001. The middle Devonian flora revisited. Pp. 120139 in Gensel, P. G. and Edwards, D., eds. Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York.CrossRefGoogle Scholar
Bischler, H., and Jovet-Ast, S.. 1981. The biological significance of morphological characters in Marchantiales (Hepaticae). Bryologist 84:208215.CrossRefGoogle Scholar
Bonacorsi, N. K., and Leslie, A. B.. 2019. Sporangium position, branching architecture, and the evolution of reproductive morphology in Devonian plants. International Journal of Plant Sciences 180:493503.CrossRefGoogle Scholar
Bonacorsi, N. K., Gensel, P. G., Hueber, F. M., Wellman, C. H., and Leslie, A. B.. 2020. A novel reproductive strategy in an Early Devonian plant. Current Biology 30:R388389.CrossRefGoogle Scholar
Bonacorsi, N. K., Gensel, P. G., Hueber, F. M., and Leslie, A. B.. 2021. Omniastrobus gen. nov., an Emsian plant with implications for the evolution of heterospory in the Early Devonian. International Journal of Plant Sciences 182:198209.CrossRefGoogle Scholar
Bower, F. O. 1890. On antithetic as distinct from homologous alternation of generations in plants. Annals of Botany 4:347370.CrossRefGoogle Scholar
Boyce, C. K. 2008. How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology 34:179194.CrossRefGoogle Scholar
Brauer, D. F. 1980. Barinophyton citrulliforme (Barinophytales incertae sedis, Barinophytaceae) from the Upper Devonian of Pennsylvania. American Journal of Botany 67:11861206.CrossRefGoogle Scholar
Brauer, D. F. 1981. Heterosporous, barinophytacean plants from the Upper Devonian of North America and a discussion of the possible affinities of the Barinophytaceae. Review of Palaeobotany and Palynology 33:347362.CrossRefGoogle Scholar
Brückner, M. Z., Mcmahon, W. J., and Kleinhans, M. G.. 2021. Muddying the waters: modeling the effects of early land plants in Paleozoic estuaries. Palaios 36:173181.CrossRefGoogle Scholar
Cai, C., and Chen, L.. 1996. On a Chinese Givetian lycopod, Longostachys latisporophyllus Zhu, Hu and Feng, emend.: its morphology, anatomy and reconstruction. Palaeontographica Abteilung B 238:143.Google Scholar
Cascales-Miñana, B. 2016. Apparent changes in the Ordovician–Mississippian plant diversity. Review of Palaeobotany and Palynology 227:1927.CrossRefGoogle Scholar
Cascales-Miñana, B., and Meyer-Berthaud, B.. 2015. Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 423:5361.CrossRefGoogle Scholar
Cascales-Miñana, B., Steemans, P., Servais, T., Lepot, K., and Gerrienne, P.. 2019. An alternative model for the earliest evolution of vascular plants. Lethaia 52:445453.CrossRefGoogle Scholar
Chaloner, W. G. 1967. Spores and land-plant evolution. Review of Paleobotany and Palynology 1:8393.CrossRefGoogle Scholar
Chaloner, W. G., and Pettitt, J. M.. 1987. The inevitable seed. Bulletin de la Société Botanique de France. Actualités Botaniques 134:3949.CrossRefGoogle Scholar
Davies, N. S., and Gibling, M. R.. 2010a. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Science Reviews 98:171200.CrossRefGoogle Scholar
Davies, N. S., and Gibling, M. R.. 2010b. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 38:5154.CrossRefGoogle Scholar
Decombeix, A. L., Galtier, J., and Prestianni, C.. 2015. The Early Carboniferous progymnosperm Protopitys: new data on vegetative and fertile structures, and on its geographic and stratigraphic distribution. Historical Biology 27:345354.CrossRefGoogle Scholar
DiMichele, W. A., Davis, J. I., and Olmstead, R. G.. 1989. Origins of heterospory and the seed habit: the role of heterochrony. Taxon 38:111.CrossRefGoogle Scholar
DiMichele, W. A., Pfefferkorn, H. W., and Gastaldo, R. A.. 2001. Response of Late Carboniferous and Early Permian plant communities to climate change. Annual Review of Earth and Planetary Sciences 29:461487.CrossRefGoogle Scholar
DiMichele, W. A., Tabor, N. J., Chaney, D. S., and Nelson, W. J.. 2006. From wetlands to wet spots: environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. Geological Society of America Special Paper 399:223248.Google Scholar
Duckett, J. G., and Duckett, A. R.. 1980. Reproductive biology and population dynamics of wild gametophytes of Equisetum. Botanical Journal of the Linnean Society 80:140.CrossRefGoogle Scholar
Duckett, J. G., and Pang, W. C. 1984 The origins of heterospory: a comparative study of sexual behaviour in the fern Platyzoma microphyllum R. Br. and the horsetail Equisetum giganteum L. Botanical Journal of the Linnean Society 88:1134.CrossRefGoogle Scholar
Duerden, H. 1929. Variations in megaspore number in Selaginella. Annals of Botany 43:451457.CrossRefGoogle Scholar
Edwards, D., and Li, C. S.. 2018. Diversity in affinities of plants with lateral sporangia from the Lower Devonian of Sichuan Province, China. Review of Palaeobotany and Palynology 258:98111.CrossRefGoogle Scholar
Elick, J. M., Driese, S. G., and Mora, C. I.. 1998. Very large plant and root traces from the Early to Middle Devonian: implications for early terrestrial ecosystems and atmospheric p(CO2). Geology 26:143146.2.3.CO;2>CrossRefGoogle Scholar
Endress, P. K. 2016. Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. Annals of Botany 117:749767.CrossRefGoogle ScholarPubMed
Fenner, N., and Freeman, C.. 2020. Woody litter protects peat carbon stocks during drought. Nature Climate Change 10:363369.CrossRefGoogle Scholar
Frahm, J. P. 2000. Bryophytes. Pp. 91102 in Porembski, S. and Barthlott, W., eds. Inselbergs. Springer, Berlin.CrossRefGoogle Scholar
Ganger, M., and Sturey, T.. 2012. Antheridiogen concentration and spore size predict gametophyte size in Ceratopteris richardii. Botany 90:175179.CrossRefGoogle Scholar
Gensel, P. G., and Edwards, D., eds. 2001. Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York.CrossRefGoogle Scholar
Gerrienne, P., and Gonez, P.. 2011. Early evolution of life cycles in embryophytes: a focus on the fossil evidence of gametophyte/sporophyte size and morphological complexity. Journal of Systematics and Evolution 49:16.CrossRefGoogle Scholar
Gerrienne, P., Meyer-Berthaud, B., Fairon-Demaret, M., Streel, M., and Steemans, P.. 2004. Runcaria, a Middle Devonian seed plant precursor. Science 306:856858.CrossRefGoogle ScholarPubMed
Gerrienne, P., Gensel, P. G., Strullu-Derrien, C., Lardeux, H., Steemans, P., and Prestianni, C.. 2011. A simple type of wood in two Early Devonian plants. Science 333:837.CrossRefGoogle ScholarPubMed
Gibling, M. R., and Davies, N. S.. 2012. Palaeozoic landscapes shaped by plant evolution. Nature Geoscience 5:99105.CrossRefGoogle Scholar
Gibling, M. R., Davies, N. S., Falcon-Lang, H. J., Bashforth, A. R., DiMichele, W. A., Rygel, M. C., and Ielpi, A.. 2014. Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proceedings of the Geologists’ Association 125:524533.CrossRefGoogle Scholar
Giesen, P., and Berry, C. M.. 2013. Reconstruction and growth of the early tree Calamophyton (Pseudosporochnales, Cladoxylopsida) based on exceptionally complete specimens from Lindlar, Germany (Mid-Devonian): organic connection of Calamophyton branches and Duisbergia trunks. International Journal of Plant Sciences 174:665686.CrossRefGoogle Scholar
Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182195.CrossRefGoogle ScholarPubMed
Haig, D. 2016. Living together and living apart: the sexual lives of bryophytes. Philosophical Transactions of the Royal Society of London B 371:20150535.CrossRefGoogle ScholarPubMed
Haig, D., and Westoby, M.. 1988. A model for the origin of heterospory. Journal of Theoretical Biology 134:257272.CrossRefGoogle Scholar
Hao, S., and Gensel, P. G.. 2001. The Posongchong floral assemblages of southeastern Yunnan, China—diversity and disparity in Early Devonian plant assemblages. Pp. 103119 in Gensel, P. G. and Edwards, D. S., eds. Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York.Google Scholar
Hao, S., Xue, J., Wang, Q., and Liu, Z.. 2007. Yuguangia ordinata gen. et sp. nov., a new lycopsid from the Middle Devonian (late Givetian) of Yunnan, China, and its phylogenetic implications. International Journal of Plant Sciences 168:11611175.CrossRefGoogle Scholar
Harder, L. D., and Johnson, S. D.. 2009. Darwin's beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytologist 183:530545.CrossRefGoogle ScholarPubMed
Hemsley, A. R., Scott, A. C., and Collinson, M. E.. 1999. The architecture and functional biology of freely dispersed megaspores. Pp. 253277 in Kurmann, M. H. and Hemsley, A. R., eds. The evolution of plant architecture. Royal Botanic Gardens, Kew, U.K.Google Scholar
Hermsen, E. J., Jud, N. A., De Benedetti, F., and Gandolfo, M. A.. 2019. Azolla sporophytes and spores from the Late Cretaceous and Paleocene of Patagonia, Argentina. International Journal of Plant Sciences 180:737754.CrossRefGoogle Scholar
Herrnstadt, I., Heyn, C. C., and Crosby, M. R.. 1980. New data on the moss genus Gigaspermum. Bryologist 83:536541.CrossRefGoogle Scholar
Høeg, O. A. 1942. Further contributions to the Middle Devonian flora of western Norway. Norsk Geologisk Tidsskrift 83:1228.Google Scholar
Hoffman, L. A., and Tomescu, A. M.. 2013. An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada). American Journal of Botany 100:754763.CrossRefGoogle ScholarPubMed
Hornych, O., Testo, W. L., Sessa, E. B., Watkins, J. E. Jr., Campany, C. E., Pittermann, J., and Ekrt, L.. 2021. Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns. New Phytologist 229:607619.CrossRefGoogle ScholarPubMed
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J., and Weddige, K.. 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284:599609.CrossRefGoogle Scholar
Jurina, A. L., and Raskatova, M. G.. 2014. Svalbardia from Givetian of central Russia (Voronezh region): leaf morphology and spores from sporangium. Palaeobotanist 63:99112.Google Scholar
Kar, R. K., and Dilcher, D. L.. 2002. An argument for the origins of heterospory in aquatic environments. Palaeobotanist 51:111.Google Scholar
Kasper, A. E. Jr., and Andrews, H. N. Jr. 1972. Pertica, a new genus of Devonian plants from northern Maine. American Journal of Botany 59:897911.CrossRefGoogle Scholar
Kennedy, K. L., Gibling, M. R., Eble, C. F., Gastaldo, R. A., Gensel, P. G., Werner-Zwanziger, U., and Wilson, R. A.. 2013. Lower Devonian coaly shales of northern New Brunswick, Canada: plant accumulations in the early stages of Terrestrial colonization. Journal of Sedimentary Research 83:12021215.CrossRefGoogle Scholar
Kenrick, P., and Crane, P. R. 1997 The origin and early diversification of land plants. Smithsonian Institution Press, Washington, D.C.Google Scholar
Knoll, A. H., Niklas, K. J., Gensel, P. G., and Tiffney, B. H.. 1984. Character diversification and patterns of evolution in early vascular plants. Paleobiology 10:3447.CrossRefGoogle Scholar
Koller, A. L., and Scheckler, S. E.. 1986. Variations in microsporangia and microspore dispersal in Selaginella. American Journal of Botany 73:12741288.CrossRefGoogle Scholar
Kotyk, M. E., Basinger, J. F., Gensel, P. G., and de Freitas, T. A.. 2002. Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada. American Journal of Botany 89:10041013.CrossRefGoogle ScholarPubMed
Krassilov, V. A., Raskatova, M. G., and Istchenko, A. A.. 1987. A new archaeopteridalean plant from the Devonian of Pavlovsk, USSR. Review of Palaeobotany and Palynology 53:163173.CrossRefGoogle Scholar
Larraín, J., Fife, A., and Atala, C.. 2017. Lorentziella (Gigaspermaceae, Bryophyta) nuevo para Chile, y lectotipificación del género. Boletín de la Sociedad Argentina de Botánica 52:351355.CrossRefGoogle Scholar
Leebens-Mack, J. H., Barker, M. S., Carpenter, E. J., Deyholos, M. K., Gitzendanner, M. A., Graham, S. W., Grosse, I., Li, Z., Melkonian, M., Mirarab, S., and Porsch, M.. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679685.Google Scholar
Lehtonen, J., and Kokko, H.. 2011. Two roads to two sexes: unifying gamete competition and gamete limitation in a single model of anisogamy evolution. Behavioral Ecology and Sociobiology 65:445459.CrossRefGoogle Scholar
Li, C.-S., Hilton, J., and Hemsley, A. R.. 1997. Frasnian (Upper Devonian) evidence for multiple origins of seed-like structures. Botanical Journal of the Linnean Society 123:133146.Google Scholar
Ligrone, R., Duckett, J. G., and Renzaglia, K. S.. 2012. Major transitions in the evolution of early land plants: a bryological perspective. Annals of Botany 109:851871.CrossRefGoogle ScholarPubMed
Lupia, R., Schneider, H., Moeser, G. M., Pryer, K. M., and Crane, P. R.. 2000. Marsileaceae sporocarps and spores from the Late Cretaceous of Georgia, USA. International Journal of Plant Sciences 161:975988.CrossRefGoogle Scholar
Marshall, J. E. 1996. Rhabdosporites langii, Geminospora lemurata and Contagisporites optivus: an origin for heterospory within the Progymnosperms. Review of Palaeobotany and Palynology 93:159–89.CrossRefGoogle Scholar
Marshall, J. E., and Hemsley, A. R.. 2003. A Mid Devonian seed-megaspore from East Greenland and the origin of the seed plants. Palaeontology 46:647670.CrossRefGoogle Scholar
Marshall, J. E., Tel'nova, O. P., and Berry, C. M.. 2019. Devonian and Early Carboniferous coals and the evolution of wetlands. Vestnik Institute of Geology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences 10:1216.Google Scholar
Matsunaga, K. K., and Tomescu, A. M.. 2016. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte. Annals of Botany 117:585598.CrossRefGoogle ScholarPubMed
McMahon, W. J., and Davies, N. S.. 2018. Evolution of alluvial mudrock forced by early land plants. Science 359:10221024.CrossRefGoogle ScholarPubMed
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
Morris, J. L., Leake, J. R., Stein, W. E., Berry, C. M., Marshall, J. E., Wellman, C. H., Milton, J. A., Hillier, S., Mannolini, F., Quirk, J., and Beerling, D. J.. 2015. Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology 58:787801.CrossRefGoogle Scholar
Pagan, F. M. 1932. Morphology of the sporophyte of Riccia crystallina. Botanical Gazette 93:7184.CrossRefGoogle Scholar
Peters, G. A., and Perkins, S. K.. 1993. The Azolla–Anabaena symbiosis: endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes: II. Re-establishment of the symbiosis following gametogenesis and embryogenesis. New Phytologist 123:6575.CrossRefGoogle Scholar
Petersen, K. B., and Burd, M.. 2017. Why did heterospory evolve? Biological Reviews 92:17391754.CrossRefGoogle ScholarPubMed
Petersen, K. B., and Burd, M.. 2018. The adaptive value of heterospory: evidence from Selaginella. Evolution 72:10801091.CrossRefGoogle ScholarPubMed
Pettitt, J. M. 1965. Two heterosporous plants from the Upper Devonian of North America. Bulletin of the British Museum (Natural History) Geology 10:8392.CrossRefGoogle Scholar
Pettitt, J. M. 1970. Heterospory and the origin of the seed habit. Biological Reviews 45:401415.CrossRefGoogle Scholar
Pigg, K. B. 2001. Isoetalean lycopsid evolution: from the Devonian to the present. American Fern Journal 91:99114.CrossRefGoogle Scholar
Prestianni, C., and Gerrienne, P.. 2010. Early seed plant radiation: an ecological hypothesis. Geological Society of London Special Publication 339:7180.CrossRefGoogle Scholar
Qiu, Y. L., Taylor, A. B., and McManus, H. A.. 2012. Evolution of the life cycle in land plants. Journal of Systematics and Evolution 50:171194.CrossRefGoogle Scholar
Rasmussen, H. N. 1995. Terrestrial orchids from seed to mycotrophic plant. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Richardson, J. B. 1967. Some British Lower Devonian spore assemblages and their stratigraphic significance. Review of Palaeobotany and Palynology 1:111–29.CrossRefGoogle Scholar
Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A., and Steemans, P.. 2010. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist 188:365369.CrossRefGoogle ScholarPubMed
Schedlbauer, M. D. 1976. Fern gametophyte development: controls of dimorphism in Ceratopteris thalictroides. American Journal of Botany 63:10801087.CrossRefGoogle Scholar
Schneller, J., and Kessler, M.. 2020. Spore dispersal of Selaginella denticulata, S. helvetica, and S. selaginoides, and the significance of heterospory in Selaginellacae. American Fern Journal 110:5865.CrossRefGoogle Scholar
Schuette, S., and Renzaglia, K. S.. 2010. Development of multicellular spores in the hornwort genus Dendroceros (Dendrocerotaceae, Anthocerotophyta) and the occurrence of endospory in Bryophytes. Nova Hedwigia 91:301316.CrossRefGoogle Scholar
Senkevitsch, M. A., Jurina, A. L., and Arkhangelskaya, A. D.. 1993 On fructifications, morphology and anatomy of Givetian lepidophytes in Kazakhstan (USSR). Palaeontographica Abteilung B 230:4358.Google Scholar
Smith, D. L. 1962. Three fructifications from the Scottish Lower Carboniferous. Palaeontology 5:225237.Google Scholar
Stein, W. E., Mannolini, F., Hernick, L. V., Landing, E., and Berry, C. M.. 2007. Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa. Nature 446:904907.CrossRefGoogle ScholarPubMed
Stein, W. E., Berry, C. M., Hernick, L. V., and Mannolini, F.. 2012 Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483:7881.CrossRefGoogle ScholarPubMed
Stein, W. E., Berry, C. M., Morris, J. L., Hernick, L. V., Mannolini, F., Ver Straeten, C., Landing, E., Marshall, J. E., Wellman, C. H., Beerling, D. J., and Leake, J. R.. 2020. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Current Biology 30:421431.CrossRefGoogle ScholarPubMed
Stubblefield, S. P., and Rothwell, G. W.. 1989. Cecropsis luculentum gen. et sp. nov.: evidence for heterosporous progymnosperms in the Upper Pennsylvanian of North America. American Journal of Botany 76:14151428.CrossRefGoogle Scholar
Surange, K. R. 1952. The morphology of Stauropteris burntislandica P. Bertrand and its megasporangium Bensonites fusiformis R. Scott. Philosophical Transactions of the Royal Society of London B 237:7391.Google Scholar
Taylor, T. N., Kerp, H., and Hass H, H.. 2005. Life history biology of early land plants: deciphering the gametophyte phase. Proceedings of the National Academy of Sciences USA 102:58925897.CrossRefGoogle ScholarPubMed
Taylor, E. L., Taylor, T. N., and Krings, M.. 2009 Paleobotany: the biology and evolution of fossil plants. Academic Press, New York.Google Scholar
Tryon, A. F. 1964. Platyzoma—a Queensland fern with incipient heterospory. American Journal of Botany 51:939942.CrossRefGoogle Scholar
Tryon, A. F., and Lugardon, B.. 1991. Spores of the Pteridophyta: surface, wall structure, and diversity based on electron microscope studies. Springer Verlag, New York.CrossRefGoogle Scholar
Turnau, E., and Karczewska, J.. 1987. Size distribution in some Middle Devonian dispersed spores and its bearing on the problem of the evolution of heterospory. Review of Palaeobotany and Palynology 52:403416.CrossRefGoogle Scholar
Wang, J., Hilton, J., Pfefferkorn, H. W., Wang, S., Zhang, Y., Bek, J., Pšenička, J., Seyfullah, L. J., and Dilcher, D.. 2021. Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation. Proceedings of the National Academy of Sciences USA 118:e2013442118CrossRefGoogle ScholarPubMed
Wellman, C. H., Osterloff, P. L., and Mohiuddin, U.. 2003. Fragments of the earliest land plants. Nature 425:282285.CrossRefGoogle ScholarPubMed
Xu, H. H., Zong, R. W., and Wang, Q.. 2012. New materials of Sphinxiocarpon, a seed-like organ of putative lycopsid affinity, from the Late Devonian of Hubei, China. Palaeoworld 21:131136.CrossRefGoogle Scholar
Xu, H. H., Berry, C. M., Stein, W. E., Wang, Y., Tang, P., and Fu, Q.. 2017. Unique growth strategy in the Earth's first trees revealed in silicified fossil trunks from China. Proceedings of the National Academy of Sciences USA 114:1200912014.CrossRefGoogle ScholarPubMed
Xue, J., Deng, Z., Huang, P., Huang, K., Benton, M. J., Cui, Y., Wang, D., Liu, J., Shen, B., Basinger, J. F., and Hao, S.. 2016. Belowground rhizomes in paleosols: the hidden half of an Early Devonian vascular plant. Proceedings of the National Academy of Sciences USA 113:94519456.CrossRefGoogle ScholarPubMed
Yamada, T., and Kato, M.. 2002. Regnellites nagashimae gen. et sp. nov., the oldest macrofossil of Marsileaceae, from the Upper Jurassic to Lower Cretaceous of western Japan. International Journal of Plant Sciences 163:715723.Google Scholar