Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:04:08.852Z Has data issue: false hasContentIssue false

Time scales and taxonomic survivorship

Published online by Cambridge University Press:  08 April 2016

Eric W. Holman*
Affiliation:
Department of Psychology, University of California, Los Angeles, California 90024

Abstract

Stratigraphic range data are used to derive time scales on which taxonomic survivorship curves for genera and families are as nearly as possible independent of their times of origin. These time scales correct for temporal variations in overall extinction rates caused by major extinctions and the pull of the Recent. Survivorship curves for genera and families on their respective time scales are well fit by Pareto distributions differing only in their scale parameter.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Davis, H. T. and Feldstein, M. L. 1979. The generalized Pareto law as a model for progressively censored survival data. Biometrika. 66:299306.Google Scholar
Feller, W. 1957. An Introduction to Probability Theory and its Applications. Vol. I (2nd ed.). Wiley; New York.Google Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology. 4:2340.CrossRefGoogle Scholar
Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 29:128.Google Scholar
Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 29:115130.Google Scholar
Maguire, B. A., Pearson, E. S., and Wynn, A. H. A. 1952. The time intervals between industrial accidents. Biometrika. 39:168180.Google Scholar
McCune, A. R. 1982. On the fallacy of constant extinction rates. Evolution. 36:610614.Google Scholar
Moore, R. C. and Teichert, C., eds. 1953date. Treatise on Invertebrate Paleontology. Geol. Soc. Am. and Univ. of Kans.; Boulder, Colo, and Lawrence, Kans.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology. 4:115.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13:8591.Google Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science. 215:15011503.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.Google Scholar
Sepkoski, J. J. Jr. 1982. A compilation of fossil marine families. Milwaukee Pub. Mus. Contrib. Biol. Geol. No. 51.Google Scholar
Shepard, R. N. 1962a. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika. 27:125140.Google Scholar
Shepard, R. N. 1962b. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika. 27:219246.Google Scholar
Shepard, R. N. 1966. Metric structures in ordinal data. J. Math. Psychol. 3:287315.CrossRefGoogle Scholar
Stanley, S. M., Signor, P. W. III, Lidgard, S., and Karr, A. F. 1981. Natural clades differ from “random” clades: simulations and analyses. Paleobiology. 7:115127.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Van Valen, L. 1979. Taxonomic survivorship curves. Evol. Theory. 4:129142.Google Scholar
Wickens, T. D. 1967. Parameter estimation in Markov chain learning models. Unpubl. ; Google Scholar
Young, F. W. and Torgerson, W. S. 1967. TORSCA: a Fortran IV program for Shepard-Kruskal multidimensional scaling analysis. Behav. Sci. 12:498.Google Scholar