Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:02:17.809Z Has data issue: false hasContentIssue false

The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra)

Published online by Cambridge University Press:  08 April 2016

Sergio F. Vizcaíno*
Affiliation:
CONICET. División Paleontología Vertebrados, Museo de La Plata Paseo del Bosque, B1900 FWA La Plata, Argentina. E-mail: [email protected]

Abstract

A combination of historical, functional, and biomechanical constraints has shaped the masticatory apparatus of fossil and extant xenarthrans. Among the more notable features are the teeth: hypselodont; commonly reduced in size, complexity, and number; separated by short diastema; and composed of osteodentine. Enamel is absent, as are the cuspal patterns of other mammals. A comprehensive revision of teeth and other features of the masticatory apparatus of xenarthrans reveals that previous generalizations underestimate the morphological diversity and adaptive possibilities developed within the clade. The great diversity of forms suggests several such possibilities ranging from specialized myrmecophagous species to carrion feeders or predators among animalivores; selective browsers to bulk grazers among herbivores; and omnivores. In some cases xenarthrans represent less extreme versions of patterns developed in other major clades of mammals (marsupials, afrotheres, euarchontoglires, and laurasiatheres) clearly predetermined by a tribosphenic dental morphology, whereas in others they represent unique novelties indicative of particular biological roles. The combination of tooth features that characterize xenarthrans might be seen as the key innovation for the ecologic diversity developed at least since the Oligocene, breaking the mold of the tribosphenic condition that constrained the evolution of the other major clades of mammals.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abba, A. M. 2008. Ecología y conservación de los armadillos (Mammalia, Dasypodidae) en el noreste de la Provincia de Buenos Aires, Argentina. . Universidad Nacional de La Plata, La Plata, Argentina.Google Scholar
Abba, A. M., Vizcaíno, S. F., and Cassini, M. 2007. Effects of land use on the distribution of three species of armadillos (Mammalia, Dasypodidae) in the pampas, Argentina. Journal of Mammalogy 88:502507.Google Scholar
Arends, A., and McNab, B. K. 2001. The comparative energetics of “caviomorph” rodents. Comparative Biochemistry and Physiology A 130:105122.Google Scholar
Arnold, G. W., and Birrell, H. A. 1977. Food intake and grazing behaviour of sheep varying in body condition. Animal Production 24:343353.Google Scholar
Bargo, M. S. 2001. The ground sloth Megatherium americanum: skull shape, bite forces, and diet. In Vizcaíno, S. F., Fariña, R. A. and Janis, C., eds. Biomechanics and paleobiology of vertebrates. Acta Paleontologica Polonica 46:4160.Google Scholar
Bargo, M. S. 2003. Biomechanics and paleobiology of the Xenarthra: state of the art. Pp. 4150in Fariña, et al. 2003.Google Scholar
Bargo, M. S., and Vizcaíno, S. F. 2008. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45:175196.Google Scholar
Bargo, M. S., Vizcaíno, S. F., and Kay, R. F. 2004. Evidence for predominance of orthal masticatory movements in early sloths. Journal of Morphology 260:276.Google Scholar
Bargo, M. S., Vizcaíno, S. F., and Kay, R. F. 2009. Predominance of orthal masticatory movements in the early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. Journal of Vertebrate Paleontology (in press).Google Scholar
Bargo, M. S., De Iuliis, G., and Vizcaíno, S. F. 2006a. Hypsodonty in Pleistocene ground sloths. Acta Paleontologica Polonica 51:5361.Google Scholar
Bargo, M. S., Toledo, N., and Vizcaíno, S. F. 2006b. Muzzle of South American ground sloths (Xenarthra, Tardigrada). Journal of Morphology 267:248263.Google Scholar
Bergqvist, L. P., Abrantes, É. A. L., and Avilla, L. D. S. 2004. The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26:323337.Google Scholar
Burritt, E., and Frost, R. 2006. Animal behavior: principles and practices. Pp. 2231in Launchbaugh, K., ed. Targeted grazing: a natural approach to vegetation management and landscape enhancement. American Sheep Industry Association, Cottrell Printing, Centennial, Colo.Google Scholar
Cartelle, C., and De Iuliis, G. 2006. Eremotherium laurillardi (Lund) (Xenarthra, Megatheriidae), the Panamerican giant ground sloth: taxonomic aspects of the ontogenetic development of skull and dentition. Journal of Systematic Paleontology 4:199209.Google Scholar
Dawson, T. J., and Hulbert, A. J. 1970. Standard metabolism, body temperature and surface area of Australian marsupials. American Journal of Physiology 218:12331238.Google Scholar
De Iuliis, G., and Edmund, A. G. 2002. Vassallia maxima Castellanos, 1946 (Mammalia: Xenarthra: Pampatheriidae), from Puerta del Corral Quemado (late Miocene to early Pliocene), Catamarca Province, Argentina. In Emry, R. J., ed. Cenozoic mammals of land and sea: tributes to the career of Clayton E. Ray. Smithsonian Contributions to Paleobiology 93:4964.Google Scholar
De Iuliis, G., Bargo, M. S., and Vizcaíno, S. F. 2000. Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. Journal of Vertebrate Paleontology 20:743754.Google Scholar
Delsuc, F., and Douzery, E. J. P. 2008. Recent advances and future prospects in xenarthran molecular phylogenetics. Pp. 1123in Vizcaíno, S. F. and Loughry, W. J.2008b.Google Scholar
Delsuc, F., Catzeflis, F. M., Stanhope, M. J., and Douzery, E. J. P. 2001. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proceedings of the Royal Society of London B 268:16051615.Google Scholar
Delsuc, F., Vizcaíno, S. F., and Douzery, E. 2004. Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evolutionary Biology 4:113.Google Scholar
Eisenberg, J. F. 1981. The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago.Google Scholar
Eisenberg, J. F., and Maliniak, E. 1985. Maintenance and reproduction of the two-toed sloths Choloepus didactylus in captivity. Pp. 327331in Montgomery, 1985.Google Scholar
Engelmann, G. 1985. The phylogeny of the Xenarthra. Pp. 5164in Montgomery, 1985.Google Scholar
Fariña, R. A. 1985. Some functional aspects of mastication in Glyptodontidae (Mammalia). Fortschritte der Zoologie 30:277280.Google Scholar
Fariña, R. A., and Vizcaíno, S. F. 2001. Carved teeth and strange jaws: how glyptodonts masticated. In Vizcaíno, S. F., Fariña, R. A., and Janis, C., eds. Biomechanics and paleobiology of vertebrates. Acta Paleontologica Polonica 46:87102.Google Scholar
Fariña, R. A., and Vizcaíno, S. F. 2003. Slow moving or browsers? A note on nomenclature. Pp. 34in Fariña, et al. 2003.Google Scholar
Fariña, R. A., Vizcaíno, S. F., and Storch, G., eds. 2003. Morphological studies in fossil and extant Xenarthra(Mammalia). Senckenbergiana Biologica 83.Google Scholar
Ferigolo, J. 1985. Evolutionary trends of the histological pattern in the teeth of Edentata (Xenarthra). Archives of Oral Biology 30: 71–82.Google Scholar
Fleagle, J. G., and Kay, R. F. 1997. Platyrrhines, catarrhines and the fossil record. Pp. 324in Kinsey, W. G., ed. New World primates: ecology, evolution, and behavior. Aldine de Gruyter. Hawthorne, N.Y.Google Scholar
Fortelius, M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica 180:176.Google Scholar
Fuentes Fuentes, M. V. 2004. Propiedades mecánicas de la dentina humana. Avarices en Odontoestomatología 20:7983.Google Scholar
Gaudin, T. J. 2003. Phylogeny of the Xenarthra (Mammalia). Pp. 2740in Fariña, et al. 2003.Google Scholar
Gaudin, T. J. 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140:255305.Google Scholar
Gaudin, T. J. 2007. Xenarthran phylogeny and relationships to non-xenarthran placentals. Journal of Morphology 268:1076.Google Scholar
Gaudin, T. J., and Wible, J. R. 2006. The phylogeny of extant and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental analysis. Pp. 153–98 in Carrano, M. T., Gaudin, T. J., Blob, R. W., and Wible, J. R., eds. Amniote paleobiology: perspectives on the evolution of mammals, birds, and reptiles. University of Chicago Press, Chicago.Google Scholar
Gillette, D. D., and Ray, C. E. 1981. Glyptodonts of North America. Smithsonian Contributions to Paleobiology 40:1255.Google Scholar
Greaves, W. S. 1974. Functional implications of mammalian jaw positions. Forma et Functio 7:263376.Google Scholar
Greaves, W. S. 1982. A mechanical limitation on the position of the jaw muscles of mammals: the one-third rule. Journal of Mammalogy 63:261266Google Scholar
Greegor, D. H. 1980. Diet of the little hairy armadillo Chaetophractus vellerosus of northwestern Argentina. Journal of Mammalogy 61: 331–34.Google Scholar
Green, J. 2007. Inter-tooth variation of microwear features in the dentine of extant xenarthrans and its importance in reconstructing paleodiet. Journal of Vertebrate Paleontology 27:84A.Google Scholar
Hoffstetter, R. 1958. Xenarthra. Pp. 535636in Piveteau, J., ed. Traité de Paléontologie, Vol. 6. Masson et Cie, Paris.Google Scholar
Hunter, J. P. 1998. Key innovations and the ecology of macroevolution. Trends in Ecology and Evolution 13:3136.Google Scholar
Hunter, J. P., and Jernvall, J. 1995. The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences USA 92:1071810722.Google Scholar
Janis, C. M. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. Mémoires du Muséum National d'Histoire Naturelle C 53: 367–87.Google Scholar
Janis, C. M. 1995. Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between extant and fossil taxa. Pp. 7698in Thomason, J., ed. Functional morphology in vertebrate palaeontology. Cambridge University Press, Cambridge.Google Scholar
Janis, C. M., and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Review 63:197230.Google Scholar
Kalthoff, D. C. 2004. Dental microstructures in fossil and recent Xenarthra (Mammalia). Journal of Vertebrate Paleontology 24:77A.Google Scholar
Kalthoff, D. C., and Tütken, T. 2007. Stable isotope and elemental compositions of extant xenarthran teeth and their potential as diet and habitat proxies in fossil xenarthrans (Mammalia). Journal of Morphology 268:62.Google Scholar
Kay, R. F., Williams, B. A., and Anaya, F. 2002. The adaptations of Branisella boliviana, the earliest South American monkey. Pp. 339370in Plavcan, J. M., Kay, R. F., Jungers, W. L., and van Schaik, C. P., eds. Reconstructing behavior in the primate fossil record. Kluwer Academic/Plenum, New York.Google Scholar
King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., and Jernvall, J. 2005. Hanging on to the edge: maintenance of primate tooth function and offspring survival. Proceedings of the National Academy of Sciences USA 102:1657916583.Google Scholar
Kraglievich, J. L. 1940. Morfología normal y morfogénesis de los molares de los carpinchos y caracteres filogenéticos de este grupo de roedores. Pp. 339494in Torcelli, A. J. and Marelli, C. A., eds. Obras completas y trabajos científicos inéditos, Vol. 3. Ministerio Obras Públicas Provincia de Buenos Aires, La Plata, Argentina.Google Scholar
Lehmann, T. 2006. Biodiversity of the Tubulidentata over geological time. Afrotherian Conservation 4:611.Google Scholar
Logan, M., and Sanson, G. D. 2002. The effect of tooth wear on the feeding behaviour of free-ranging koalas (Phascolarctos cinereus, Goldfuss). Journal of Zoology 256:6369.Google Scholar
Lucas, P. W. 2004. Dental functional morphology: how teeth work. Cambridge University Press, Cambridge.Google Scholar
Luo, Z. X., Cifelli, R. L., and Kielan-Jaworowska, Z. 2001. Dual origin of tribosphenic mammals. Nature 409:5357Google Scholar
MacFadden, B. J. 1997. Origin and evolution of the grazing guild in New World terrestrial mammals. Trends in Ecology and Evolution 12:182187.Google Scholar
Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610614.Google Scholar
Maglio, V. J. 1973. Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society 63.Google Scholar
Mayr, E. 1963. Animal species and evolution. Belknap Press of Harvard University Press, Cambridge.Google Scholar
McDonald, H. G. 1995. Gravigrade xenarthrans from the Early Pleistocene Leisey Shell Pit 1A, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History 37:345373.Google Scholar
McDonald, H. G. 2003. Xenarthran skeletal anatomy: primitive or derived? (Mammalia, Xenarthra). Pp. 517in Fariña, et al. 2003.Google Scholar
McDonald, H. G. 2005. Paleoecology of Extinct Xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History 45:313333.Google Scholar
McDonald, H. G., and De Iuliis, G. 2008. Fossil history of sloths. Pp. 3955in Vizcaíno, and Loughry, 2008b.Google Scholar
McDonald, H. G., Vizcaíno, S. F., and Bargo, M. S. 2008. Skeletal anatomy and the fossil history of the Vermilingua. Pp. 6478in Vizcaíno, and Loughry, 2008b.Google Scholar
McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia. Pp. 2146in Luckett, W. P. and Szalay, P. S., eds. Phylogeny of the Primates. Plenum, New York.Google Scholar
McKenna, M. C., and Bell, S. K. 1997. Classification of mammals above the species level. Columbia University Press, New York.Google Scholar
McKenna, M. C., Wyss, A. R., and Flynn, J. J. 2006. Paleogene pseudoglyptodont xenarthrans from central Chile and Argentine Patagonia. American Museum Novitates 3536:118.Google Scholar
McNab, B. K. 1984. Physiological convergence amongst ant-eating and termite-eating mammals. Journal of Zoology 203:485510.Google Scholar
McNab, B. K. 1988. Complications in scaling the basal rate of metabolism in mammals. Quarterly Review of Biology 63:2554.Google Scholar
McNab, B. K. 2000. Metabolic scaling: Energy constraints on carnivore diet. Nature 407:584.Google Scholar
McNaughton, S. J., Tarrants, J. L., McNaughton, M. M., and Davis, R. H. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528535.Google Scholar
Mellado, M., Rodriguez, A., Villarreal, J. A., Rodriguez, R., Salinas, J., and Lopez, R. 2005. Gender and tooth wear effects on diets of grazing goats. Small Ruminant Research 57:105114.Google Scholar
Mendoza, M., and Palmqvist, P. 2008. Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? Journal of Zoology 274:134142.Google Scholar
Meritt, D. A. Jr. 2008. Xenarthrans of the Paraguayan Chaco. Pp. 294299in Vizcaíno, and Loughry, 2008b.Google Scholar
Merrett, P. K. 1983. Edentates. Pp. 3948in Project for city and guilds: animal management course. Zoological Trust of Guernsey, Guernsey.Google Scholar
Moller-Krull, M., Delsuc, F., Churakov, G., Marker, C., Superina, M., Brosius, J., Douzery, E. J., and Schmitz, J. 2007. Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths). Molecular Biology and Evolution 24: 2573–82.Google Scholar
Montgomery, G. G. 1985. The evolution and ecology of armadillos, sloths, and vermilinguas. Smithsonian Institution Press, Washington, D.C.Google Scholar
Muizon, C. de, McDonald, H. G., Salas, R., and Urbina, M. 2004. The evolution of feeding adaptations of the aquatic sloths Thalassocnus. Journal of Vertebrate Paleontology 24:398410.Google Scholar
Müller, G. B. 2002. Novelty and key innovations. Pp. 827830in Pagel, M. D., ed. Encyclopedia of evolution, Vol. 2. Oxford University Press, Oxford.Google Scholar
Müller, G. B., and Wagner, G. 2003. Innovation. Pp. 228233in Hall, B. K. and Olson, W., eds. Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–18.Google Scholar
Naples, V. L. 1982. Cranial osteology and function in the tree sloths, Bradypus and Choloepus. American Museum Novitates 2739:141.Google Scholar
Naples, V. L. 1987. Reconstruction of cranial morphology and analysis of function in Nothrotheriops shastensis. Contributions in Science, Los Angeles County Museum of Natural History 389:121.Google Scholar
Naples, V. L. 1989. The feeding mechanism in the Pleistocene ground sloth, Glossotherium, Contributions in Science, Los Angeles County Museum of Natural History 425:123.Google Scholar
Naples, V. L. 1990. Morphological changes in the facial region and a model of dental growth and wear pattern development in Nothrotheriops shastensis. Journal of Vertebrate Paleontology 10:372389.Google Scholar
Naples, V. L. 1999. Morphology, evolution and function of feeding in the giant anteater (Myrmecophaga tridactyla). Journal of Zoology 249:1941.Google Scholar
Nowak, R. M. 1991. Walker's mammals of the world, Vol. 1. Johns Hopkins University Press, Baltimore.Google Scholar
Ortiz-Jaureguizar, E., and Cladera, G. A. 2006. Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments 66:498532.Google Scholar
Pahl, L. 1985. The diet and population ecology of the common ringtail possum (Pseudocheirus peregrinus) in Southern Victoria. . Monash University, Victoria, Australia.Google Scholar
Pascual, R. 2006. Evolution and geography: the biogeographic history of South American land mammals. Annals of the Missouri Botanical Garden 93:209230.Google Scholar
Pascual, R., and Bondesio, P. 1982. Un roedor Cardiatheriinae (Hydrochoeridae) de la Edad Huayqueriense (Mioceno tardío) de La Pampa. Sumario de los ambientes terrestres en la Argentina durante el Mioceno. Ameghiniana 19:1935.Google Scholar
Pascual, R., and Ortiz-Jaureguizar, E. 1990. Evolving climates and mammal faunas in Cenozoic South America. Journal of Human Evolution 19:2360.Google Scholar
Pascual, R., Carlini, A. A., and De Santis, L. J. 1988. Dentition and ways of life in Cenozoic South American rodent-like marsupials: outstanding examples of convergence. In Russell, D. E., Santoro, J. P., and Sigogneau-Russell, D., eds. Teeth revisited. Proceedings of the VIIth International Symposium on Dental Morphology. Mémoires du Muséum National d'Histoire Naturelle 53:217226.Google Scholar
Patterson, B., and Pascual, R. 1972. The fossil mammal fauna of South America. Pp. 247309in Keast, A., Erk, F., and Glass, B., eds. Evolution, mammals, and southern continents. State University of New York Press, Albany.Google Scholar
Pérez-Barbería, F. J., and Gordon, I. J. 1998. The influence of molar occlusal surface area on the voluntary intake, digestion, chewing behaviour and diet selection of red deer (Cervus elaphus). Journal of Zoology 245:307316.Google Scholar
Pérez, L. M., Scillato-Yané, G. J., and Vizcaíno, S. F. 2000. Estudio morfofuncional del aparato hioideo de Glyptodon sp. (Cingulata, Glyptodontidae). Ameghiniana 37:293299.Google Scholar
Prasad, A. B., M. W. Allard, NISC Comparative Sequencing Program, and E. D. Green. 2008. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Molecular Biology and Evolution 25:17951808.Google Scholar
Pujos, F., and De Iuliis, G. 2007. Late Oligocene Megatherioidea fauna (Mammalia: Xenarthra), from Salla-Luribay (Bolivia): new data on basal sloth radiation and Cingulata-Tardigrada split. Journal of Vertebrate Paleontology 27:132144.Google Scholar
Redford, K. H. 1985. Food habits of armadillos (Xenarthra: Dasypodidae). Pp. 429437in Montgomery, 1985.Google Scholar
Redford, K. H., and Wetzel, R. M. 1985. Euphractus sexcinctus. Mammalian Species 252:14.Google Scholar
Rose, K. D., Emry, R. J., Gaudin, T. J., and Storch, G. 2005. Xenarthra and Pholidota. Pp. 106126in Rose, K. D. and Archibald, J. D., eds. The rise of placental mammals: origins and relationships of the major extant clades. Johns Hopkins University Press, Baltimore.Google Scholar
Schluter, D., and Ricklefs, R. E. 1993. Species diversity: introduction to the problem. Pp. 112in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Scillato-Yané, G. J. 1976. Sobre un Dasypodidae (Mammalia, Xenarthra) de edad Riochiquense (Paleoceno superior) de Itaboraí, Brasil. Anales de la Academia Brasilera de Ciências 48:527530.Google Scholar
Scillato-Yané, G. J., Carlini, A. A., and Vizcaíno, S. F. 1987. Nuevo Nothrotheriinae (Edentata, Tardigrada) de Edad Chasiquense (Mioceno tardío) del sur de la Provincia de Buenos Aires (Argentina). Ameghiniana 24:211215.Google Scholar
Scott, W. B. 1903–1904. Mammalia of the Santa Cruz beds. I. Edentata. Pp. 1364in Scott, W. B., ed. Reports of the Princeton University Expeditions to Patagonia 1896–1899. Princeton University Press, Princeton, N.J.Google Scholar
Senawongsea, P., Otsuki, M., Tagami, J., and Mjörc, I. 2006. Age-related changes in hardness and modulus of elasticity of dentine. Archives of Oral Biology 51:457463.Google Scholar
Sibbald, A. M., and Kerr, W. G. 1994. The effect of body condition and previous nutrition on the herbage intakes of ewes grazing autumn pastures at two sward heights. Animal Production 58:231235.Google Scholar
Simpson, G. G. 1932. Enamel on the teeth of an Eocene edentate. American Museum Novitates 567:14.Google Scholar
Simpson, G. G. 1951. Horses: the story of the horse family in the modern world and through sixty million years of history. Oxford University Press, New York.Google Scholar
Simpson, G. G. 1953. The major features of evolution. Columbia University Press, New York.Google Scholar
Smith, K. K., and Redford, K. H. 1990. The anatomy and function of the feeding apparatus in two armadillos (Dasypoda): anatomy is not destiny. Journal of Zoology 222:2747.Google Scholar
Superina, M., Miranda, F., and Plese, T. 2008. Maintenance of Xenarthra in captivity. Pp. 232243in Vizcaíno, and Loughry, 2008b.Google Scholar
Thomason, J. J. 1995. To what extent may the mechanical environment of a bone be inferred from its internal architecture? Pp. 249262in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Vinacci Thul, E. L. 1945. Osteografía cefálica de Glyptodon reticulatus Owen. Physis 20:2430.Google Scholar
Vizcaíno, S. F. 1994. Mecánica masticatoria de Stegotherium tessellatum Ameghino (Mammalia, Xenarthra) del Mioceno temprano de Santa Cruz (Argentina). Algunos aspectos paleoecológicos relacionados. Ameghiniana 31:283290.Google Scholar
Vizcaíno, S. F., and Bargo, M. S. 1998. The masticatory apparatus of Eutatus (Mammalia, Cingulata) and some allied genera: evolution and paleobiology. Paleobiology 24:371383.Google Scholar
Vizcaíno, S. F., and De Iuliis, G. 2003. Evidence for advanced carnivory in fossil armadillos. Paleobiology 29:123138.Google Scholar
Vizcaíno, S. F., and Fariña, R. F. 1994. Caracterización trófica de los armadillos (Mammalia, Xenarthra, Dasypodidae) de Edad Santacrucense (Mioceno temprano) de Patagonia (Argentina). Acta Geologica Leopoldensia 39:191200.Google Scholar
Vizcaíno, S. F., and Fariña, R. F. 1997. Diet and locomotion in Peltephilus: a new view. Lethaia 30:7986.Google Scholar
Vizcaíno, S. F., and Loughry, W. J. 2008a. Xenarthran biology: past, present, and future. Pp. 17in Vizcaíno, and Loughry, 2008b.Google Scholar
Vizcaíno, S. F. and Loughry, W. J. 2008b. The biology of the Xenarthra. University Press of Florida, Gainesville.Google Scholar
Vizcaíno, S. F., De Iuliis, G., and Bargo, M. S. 1998. Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheriidae): when anatomy constrains destiny. Journal of Mammalian Evolution 5:293321.Google Scholar
Vizcaíno, S. F., Fariña, R. A., Bargo, M. S., and De Iuliis, G. 2004. Phylogenetical assessment of the masticatory adaptations in Cingulata (Mammalia, Xenarthra). Ameghiniana 41:651664.Google Scholar
Vizcaíno, S. F., Bargo, M. S., and Cassini, G. H. 2006. Dental occlusal surface area in relation to food habits and other biologic features in fossil Xenarthrans. Ameghiniana 43:1126.Google Scholar
Vizcaíno, S. F., Bargo, M. S., and Fariña, R. A. 2008. Form, function and paleobiology in Xenarthrans. Pp. 8699in Vizcaíno, and Loughry, 2008b.Google Scholar
Webb, S. D. 1985. The interrelationships of tree sloths and ground sloths. Pp. 105112in Montgomery, 1985.Google Scholar
Wright, P. 1997. Behavioral and ecological comparison of Neotropical and Malagasy primates. Pp. 127143in Kinsey, W. G., ed. New World primates: ecology, evolution, and behavior. Aldine de Gruyter, Hawthorne, N.Y.Google Scholar