Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T17:08:58.383Z Has data issue: false hasContentIssue false

Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation

Published online by Cambridge University Press:  08 February 2016

Richard C. Hulbert Jr.*
Affiliation:
Department of Geology and Geography, Box 8149, Georgia Southern University, Statesboro, Georgia 30460

Abstract

The 18 m.y. history of the subfamily Equinae (exclusive of Archaeohippus and “Parahippus”) in North America consisted of a 3-m.y. radiation phase, a 9-m.y. steady-state diversity phase, and a 6-m.y. reduction phase. During the steady-state phase, species richness varied between 14 and 20, with two maxima at about 13.5 and 6.5 Ma. Species richness of the tribes Hipparionini and Equini was about equal through the middle Miocene, but hipparionines consistently had more species in the late Miocene and early Pliocene. Overall mean species duration was 3.2 m.y. (n = 50), or an average extinction rate of 0.31 m.y.-1 During the radiation phase, speciation rates were very high (0.5 to 1.4 m.y.-1), while extinction rates were low (<0.10 m.y.-1). Speciation and extinction rates both averaged about 0.15 m.y.-1 during the steady-state phase, with extinction rates having more variation. Extinction rates increased fourfold during the reduction phase, while speciation rates declined slightly. Late Hemphillian extinctions affected both tribes severely, not just the three-toed hipparionines, and were correlated with global climatic change.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1992. Conjunction among taxonomic distributions and the Miocene mammalian biochronology of the Great Plains. Paleobiology 18:326343.CrossRefGoogle Scholar
Axelrod, D. I. 1980. Contributions to the Neogene paleobotany of central California. University of California Publications in Geological Sciences 121:1212.Google Scholar
Axelrod, D. I. 1985. Rise of the grassland biome, central North America. The Botanical Review 51:163201.CrossRefGoogle Scholar
Bernor, R. L., Kovar-Eder, J., Lipscomb, D., Rogl, F., Sen, S., and Tobien, H. 1988. Systematic, stratigraphic and paleoenvironmental context of first-appearing hipparion in the Vienna Basin, Austria. Journal of Vertebrate Paleontology 8:427452.CrossRefGoogle Scholar
Cracraft, J. 1982. A nonequilibrium theory from the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology 31:348365.CrossRefGoogle Scholar
DeNiro, M. J. 1987. Stable isotopy and archaeology. American Scientist 75:182191.Google Scholar
Downs, T. 1961. A study of variation and evolution in Miocene Merychippus. Los Angeles County Museum Contributions in Science 45:175.Google Scholar
Elias, M. K. 1942. Tertiary prairie grasses and other herbs from the High Plains. Special Paper Geological Society of America 41:1176.Google Scholar
Evander, R. L. 1989. Phylogeny of the family Equidae. Pp. 109127in Prothero, D. R. and Schoch, R. M., eds. The evolution of perissodactyls. Oxford University Press, New York.Google Scholar
Forsten, A. M. 1968. Revision of the Palearctic Hipparion. Acta Zoologica Fennica 119:1134.Google Scholar
Forsten, A. M. 1973. Size and shape evolution in the cheek teeth of fossil horses. Acta Zoologica Fennica 137:131.Google Scholar
Forsten, A. M. 1989. Horse diversity through the ages. Biological Reviews 64:279304.CrossRefGoogle ScholarPubMed
Fortelius, M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica 180:176.Google Scholar
Gregory, J. T. 1971. Speculations on the significance of fossil vertebrates for the antiquity of the Great Plains of North America. Abhandlungen Hessisches Landesamt fur Bodenforschung 60:6472.Google Scholar
Hayek, L. A., Bernor, R. L., Solounias, N., and Steirgerwald, P. 1992. Preliminary studies of hipparionine horse diet as measured by tooth microwear. Annales Zoologici Fennici 28:187200.Google Scholar
Hibbard, C. W. 1960. An interpretation of Pliocene and Pleistocene climates in North America. Annual Report of the Michigan Academy of Sciences, Arts, and Letters 62:530.Google Scholar
Hulbert, R. C. 1982. Population dynamics of the three-toed horse Neohipparion from the late Miocene of Florida. Paleobiology 8:159167.CrossRefGoogle Scholar
Hulbert, R. C. 1987. Late Neogene Neohipparion (Mammalia, Equidae) from the Gulf Coastal Plain of Florida and Texas. Journal of Paleontology 61:809830.CrossRefGoogle Scholar
Hulbert, R. C. 1988a. Calippus and Protohippus (Mammalia, Perissodactyla, Equidae) from the Miocene (Barstovian–early Hemphillian) of the Gulf Coastal Plain. Bulletin of the Florida State Museum, Biological Sciences 32:221340.Google Scholar
Hulbert, R. C. 1988b. A new Cormohipparion (Mammalia, Equidae) from the Pliocene (latest Hemphillian and Blancan) of Florida. Journal of Vertebrate Paleontology 7:451468.CrossRefGoogle Scholar
Hulbert, R. C. 1988c. Cormohipparion and Hipparion (Mammalia, Perissodactyla, Equidae) from the Late Neogene of Florida. Bulletin of the Florida State Museum, Biological Sciences 33:229338.Google Scholar
Hulbert, R. C. 1989. Phylogenetic interrelationships and evolution of North American Late Neogene Equinae. Pp. 176196in Prothero, D. R. and Schoch, R. M., eds. The evolution of perissodactyls. Oxford University Press, New York.Google Scholar
Hulbert, R. C., and MacFadden, B. J. 1991. Morphological transformation and cladogenesis at the base of the adaptive radiation of Miocene hypsodont horses. American Museum Novitates 3000:161.Google Scholar
Janis, C. M. 1984. The use of fossil ungulate communities as indicators of climate and environment. Pp. 85104in Brenchley, P., ed. Fossils and climate. John Wiley, London.Google Scholar
Janis, C. M. 1988a. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. Memoires Museum National d'Historie Naturelle, Paris, Serie C 53:367387.Google Scholar
Janis, C. M. 1988b. Estimation of diets in fossil ungulate mammals. Journal of Vertebrate Paleontology 9:27A.Google Scholar
Janis, C. M. 1989. A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32:463481.Google Scholar
Janis, C. M., and Ehrhardt, D. 1988. Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society 92:267284.CrossRefGoogle Scholar
Keller, G., and Barron, J. A. 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geological Society of America Bulletin 94:590613.2.0.CO;2>CrossRefGoogle Scholar
Kowalevsky, W. 1874. Monographie der Gattung Anthracotherium Cuv. Palaeontographica 22:131346.Google Scholar
Leopold, E. B., and Denton, M. F. 1987. Comparative age of grassland and steppe east and west of the northern Rocky Mountains. Annals of the Missouri Botanical Garden 74:841867.CrossRefGoogle Scholar
MacFadden, B. J. 1984. Systematics and phylogeny of Hipparion, Neohipparion, Nannippus, and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the New World. Bulletin of the American Museum of Natural History 179:1196.Google Scholar
MacFadden, B. J. 1985. Patterns of phylogeny and rates of evolution in fossil horses: hipparions from the Miocene and Pliocene of North America. Paleobiology 11:245257.CrossRefGoogle Scholar
MacFadden, B. J. 1986. Late Hemphillian monodactyl horses (Mammalia, Equidae) from the Bone Valley Formation of central Florida. Journal of Paleontology 60:466475.CrossRefGoogle Scholar
MacFadden, B. J. 1987. Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope's Law, and the evolution of body size. Paleobiology 12:355369.CrossRefGoogle Scholar
MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and evolution of the family Equidae. Cambridge University Press, New York.Google Scholar
MacFadden, B. J., and Hulbert, R. C. 1988. Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature (London) 336:466468.CrossRefGoogle Scholar
MacGinitie, H. D. 1962. The Kilgore flora: a late Miocene flora from northern Nebraska. University of California Publications in Geological Sciences 35:67158.Google Scholar
Martin, P. S., and Klein, R. G. 1984. Quaternary extinctions. University of Arizona Press, Tucson.Google Scholar
Matthew, W. D. 1926. The evolution of the horse, a record and its interpretation. The Quarterly Review of Biology 1:139185.CrossRefGoogle Scholar
Matthew, W. D., and Stirton, R. A. 1930. Equidae from the Pliocene of Texas. Bulletin of the Department of Geological Sciences, University of California 19:349396.Google Scholar
Maurer, B. A. 1989. Diversity-dependent species dynamics: incorporating the effects of population-level processes on species dynamics. Paleobiology 15:133146.CrossRefGoogle Scholar
Novacek, M. J., and Norell, M. A. 1982. Fossils, phylogeny, and taxonomic rates of evolution. Systematic Zoology 31:366375.CrossRefGoogle Scholar
Owen-Smith, N. 1985. Niche separation among African ungulates. Pp. 167171in Vrba, E. S., ed. Species and speciation. Transvaal Museum, Pretoria, South Africa.Google Scholar
Raup, D. M. 1975. Taxonomic survivorships curves and Van Valen's Law. Paleobiology 1:8296.CrossRefGoogle Scholar
Rensberger, J. M., Forsten, A., and Fortelius, M. 1984. Functional evolution of the cheek tooth pattern and chewing direction in Tertiary horses. Paleobiology 10:439452.CrossRefGoogle Scholar
Schultz, G. E. 1977. The Ogallala Formation and its vertebrate faunas in the Texas and Oklahoma panhandles. Pp. 5104in Schultz, G. E., ed. Guidebook field conference on Late Cenozoic biostratigraphy of the Texas Panhandle and adjacent Oklahoma. Kilgore Research Center, West Texas State University, Canyon.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Shotwell, J. A. 1961. Late Tertiary biogeography of horses in the northern Great Basin. Journal of Paleontology 35:203217.Google Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Simpson, G. G. 1951. Horses. Oxford University Press, New York.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1992. Tooth microwear analysis of Eotragus sansaniensis (Mammalia: Ruminantia), one of the oldest known bovids. Journal of Vertebrate Paleontology 12:113121.CrossRefGoogle Scholar
Solounias, N., Teaford, M., and Walker, A. 1988. Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14:287300.CrossRefGoogle Scholar
Sondaar, P. Y. 1968. The osteology of the manus of fossil and recent Equidae with special reference to phylogeny and function. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, afd. Natuurkunde 25:176.Google Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, New York.Google Scholar
Stanley, S. M. 1982. Macroevolution and the fossil record. Evolution 36:460473.CrossRefGoogle ScholarPubMed
Stebbins, G. L. 1981. Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden 68:7586.CrossRefGoogle Scholar
Stirton, R. A. 1940. Phylogeny of North American Equidae. Bulletin of the Department of Geological Sciences, University of California 25:165198.Google Scholar
Stirton, R. A. 1947. Observations on evolutionary rates in hypsodonty. Evolution 1:3241.CrossRefGoogle Scholar
Teaford, M. F. 1988. A review of dental microwear and diet in modern mammals. Scanning Microscopy 2:11491166.Google ScholarPubMed
Thomasson, J. R. 1983. Carex graceii sp. n., Cyperocarpus eliasii sp. n., Cyperocarpus terrestris sp. n., and Cyperocarpus pulcherrima sp. n. (Cyperaceae) from the Miocene of Nebraska. American Journal of Botany 70:435449.Google Scholar
Thomasson, J. R., and Voorhies, M. R. 1990. Grasslands and grazers. Pp. 8487in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology: a synthesis. Blackwell Scientific, Oxford.Google Scholar
Thomasson, J. R., Nelson, M. E., and Zakrzewski, R. J. 1986. A fossil grass (Gramineae: Chloridoideae) from the Miocene with Kranz anatomy. Science 233:876878.CrossRefGoogle ScholarPubMed
Thomasson, J. R., Zakrzewski, R. J., Lagarry, H. E., and Mergen, D. E. 1990. A late Miocene (late early Hemphillian) biota from northwestern Kansas. National Geographic Research 6:231244.Google Scholar
Thorp, J. L., and van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Wang, Y., and Cerling, T. E. 1992. Dietary evolution of horses: evidence from carbon isotopes in fossil tooth enamel. Journal of Vertebrate Paleontology 12:58A.Google Scholar
Webb, S. D. 1977. A history of savanna vertebrates in the New World. Part I: North America. Annual Review of Ecology and Systematics 8:355380.Google Scholar
Webb, S. D. 1981. Kyptoceras amatorum, new genus and species from the Pliocene of Florida, the last protoceratid artiodactyl. Journal of Vertebrate Paleontology 1:357365.CrossRefGoogle Scholar
Webb, S. D. 1983. The rise and fall of the late Miocene ungulate fauna in North America. Pp. 267306in Nitecki, M. H., ed. Coevolution. University of Chicago Press, Chicago.Google Scholar
Webb, S. D. 1984. Ten million years of mammal extinctions in North America. Pp. 189210in Martin, P. S. and Klein, R. G., eds. Quaternary extinctions. University of Arizona Press, Tucson.Google Scholar
Webb, S. D. 1989. The fourth dimension in North American terrestrial mammal communities. Pp. 181203in Morris, D. W., Abramsky, Z., and Willig, M. R., eds. Patterns in the structure of mammalian communities. Texas Tech University, Lubbock.Google Scholar
Webb, S. D., and Hulbert, R. C. 1986. Systematics and evolution of Pseudhipparion (Mammalia, Equidae) from the Late Neogene of the Gulf Coastal Plain and the Great Plains. Pp. 237285in Flanagan, K. M. and Lillegraven, J. A., eds. Vertebrates, phylogeny, and philosophy. University of Wyoming, Laramie.Google Scholar
Winans, M. C. 1989. A quantitative study of North American fossil species of the genus Equus. Pp. 262297in Prothero, D. R. and Schoch, R. M., eds. The evolution of perissodactyls. Oxford University Press, New York.Google Scholar
Wolfe, J. A. 1985. Distribution of major vegetational types during the Tertiary. Geophysical Monograph 32:357375.Google Scholar
Woodruff, F., Savin, S. M., and Douglas, R. G. 1981. Miocene stable isotope record: a detailed deep Pacific Ocean study and its paleoclimatic implications. Science 212:665668.CrossRefGoogle ScholarPubMed
Zubakov, V. A., and Borzenkova, I. I. 1990. Global palaeoclimate of the Late Cenozoic. Elsevier, Amsterdam.Google Scholar