Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T00:55:53.114Z Has data issue: false hasContentIssue false

Surface ornamentation of the echinoid test and its ecologic significance

Published online by Cambridge University Press:  08 February 2016

Susan C. Oldfield*
Affiliation:
Department of Zoology and Comparative Physiology, Queen Mary College; Mile End Road, London E1 4NS, England

Abstract

A scanning electron microscope survey of the regular echinoid test reveals that the outer surface of its component coronal plates may be sculptured with a fine-relief ornament that is species-characteristic for those species presently surveyed. Structural resemblances in surface ornamentation are more marked in species living in similar habitats than in those species that are apparently phyletically related. Plate ornament is related to skeletal magnesium levels. It is tentatively suggested that low growth rate echinoids that inhabit “low-energy” environments (and exhibit low total skeletal magnesium levels) and “high-energy” habitat-exploiting species with high growth rates (and relatively high skeletal magnesium levels) may have differential patterns of plate growth that can be distinguished by the degree of ornamentation of the plate surface.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, D. P., Ogden, J. C., and Abbott, I. A. 1974. Studies on the activity pattern, behavior, and food of the echinoid Echinometra lucunter (Linnaeus) on beachrock and algal reefs at St. Croix, U.S. Virgin Islands. Spec. Publ. No. 4, West Indies Lab., Fairleigh Dickenson Univ.Google Scholar
Clark, A. M. and Davies, P. S. 1965. Echinoderms of the Maldive Islands. Ann. Mag. Nat. Hist. 8:597612.CrossRefGoogle Scholar
Dart, J. K. G. 1972. Echinoids, algal lawn and coral recolonization. Nature. 239:5051.CrossRefGoogle Scholar
Davies, T. D., Crenshaw, M. A., and Heatfield, B. M. 1972. The effect of temperature on the chemistry and structure of echinoid spine regeneration. J. Paleontol. 46:874883.Google Scholar
Dix, T. G. 1970. Biology of Evechinus chloroticus (Echinoidea: Echinometridae) from different localities. 1. General. N. Z. J. Mar. Freshwater Res. 4:91116.CrossRefGoogle Scholar
Jensen, M. 1972. The ultrastructure of the echinoid skeleton. Sarsia. 48:3948.CrossRefGoogle Scholar
Jensen, M. 1974. The Strongylocentrotidae (Echinoidea), a morphologic and systematic study. Sarsia. 57:113148.CrossRefGoogle Scholar
Kier, P. M. 1972. Upper Miocene echinoids from the Yorktown Formation of Virginia and their environmental significance. Smithson. Contrib. Paleobiol. No. 13.CrossRefGoogle Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Paleontol. Soc. Mem. 5(J. Paleontol. 48, no. 3, Supp.):196.Google Scholar
Kier, P. M. 1975. The echinoids of Carrie Bow Cay, Belize. Smithson. Contrib. Zool. No. 206.CrossRefGoogle Scholar
Kier, P. M. and Grant, R. E. 1965. Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida. Smithson. Misc. Collect. 149: No. 6.Google Scholar
Leighton, D. L. 1971. Grazing activities of benthic invertebrates in Southern Californian kelp beds. pp. 421453. In: North, W. J., ed. Biology of Giant Kelp (Macrocystis) in California. J. Cramer; Germany.Google Scholar
Lewis, J. B. 1958. The biology of the tropical sea urchin Tripneustes esculentus Leske in Barbados, British West Indies. Can. J. Zool. 36:607621.CrossRefGoogle Scholar
McPherson, B. F. 1968. Contributions to the biology of the sea urchin Eucidaris tribuloides (Lamarck). Bull. Mar. Sci. 18:400443.Google Scholar
McPherson, B. F. 1969. Studies on the biology of the tropical sea urchins, Echinometra lucunter and Echinometra viridis. Bull. Mar. Sci. 19:194213.Google Scholar
Moore, H. B., Jutare, T., Bauer, J. C., and Jones, J. A. 1963. The biology of Lytechinus variegatus. Bull. Mar. Sci. Gulf Caribb. 13:2553.Google Scholar
Mortensen, T. 1935. A Monograph of the Echinoidea, Bothriocidaroida, Melonechinoida, Lepidocentroida, and Stirodonta. II. C. A. Reitzel Forlag; Copenhagen.Google Scholar
Mortensen, T. 1940. A Monograph of the Echinoidea, Aulodonta. III (1). C. A. Reitzel Forlag; Copenhagen.Google Scholar
Mortensen, T. 1943a. A Monograph of the Echinoidea, Camarodonta I. III (2). C. A. Reitzel Forlag; Copenhagen.Google Scholar
Mortensen, T. 1943b. A Monograph of the Echinoidea, Camarodonta II. III (3). C. A. Reitzel Forlag; Copenhagen.Google Scholar
Ogden, J. C., Brown, R. A., and Salesky, N. 1973. Grazing by the echinoid Diadema antillarum (Philippi): formation of haloes around West Indian patch reefs. Science. 182:715717.CrossRefGoogle ScholarPubMed
Ormond, R. F. G. and Campbell, A. C. 1971. Observations on Acanthaster planci and other coral reef echinoderms in the Sudanese Red Sea. Symp. Zool. Soc. Lond. 28:433454.Google Scholar
Pearse, J. S. and Pearse, V. B. 1975. Growth zones in the echinoid skeleton. Am. Zool. 15:731753.CrossRefGoogle Scholar
Raup, D. M. 1966. The endoskeleton. pp. 379395. In: Boolootian, R. A., ed. Physiology of Echinodermata. Interscience; New York, N.Y.Google Scholar
Sinclair, A. N. 1959. Observations on the behaviour of sea urchins. Aust. Mus. Mag. 13:38.Google Scholar
Swan, E. F. 1966. Growth, autonomy, and regeneration. pp. 397434. In: Boolootian, R. A., ed. Physiology of Echinodermata. Interscience; New York, N.Y.Google Scholar
Weber, J. N. 1969a. Magnesium in Echinoderm Calcite. Mater. Res. Lab. Monogr. No. 4, Pa. State Univ. 83 pp.Google Scholar
Weber, J. N. 1969b. The incorporation of magnesium into the skeletal calcites of echinoderms. Am. J. Sci. 267:537566.CrossRefGoogle Scholar
Weber, J. N. 1973. Temperature dependance of magnesium in echinoid and asteroid skeletal calcite: a reinterpretation of its significance. J. Geol. 81:543556.CrossRefGoogle Scholar