Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:30:45.313Z Has data issue: false hasContentIssue false

Spatial scaling of beta diversity in the shallow-marine fossil record

Published online by Cambridge University Press:  24 September 2020

Tom M. Womack
Affiliation:
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Post Office Box 600, Wellington, New Zealand. E-mail: [email protected], [email protected], [email protected]
James S. Crampton
Affiliation:
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Post Office Box 600, Wellington, New Zealand. E-mail: [email protected], [email protected], [email protected]
Michael J. Hannah
Affiliation:
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Post Office Box 600, Wellington, New Zealand. E-mail: [email protected], [email protected], [email protected]

Abstract

Beta diversity quantifies the spatial structuring of ecological communities and is a fundamental partition of biodiversity, central to understanding many macroecological phenomena in modern biology and paleobiology. Despite its common application in ecology, studies of beta diversity in the fossil record are relatively limited at regional spatial scales that are important for understanding macroevolutionary processes. The spatial scaling of beta diversity in the fossil record is poorly understood, but has significant implications due to temporal variation in the spatial distribution of fossil collections and the large spatiotemporal scales typically employed. Here we test the spatial scaling of several common measures of beta diversity using the Cenozoic shallow-marine molluscan fossil record of New Zealand and derive a spatially standardized time series of beta diversity. To measure spatial scaling, we use and compare grid-cell occupancy based on an equal-area grid and summed minimum spanning tree length, both based on reconstructed paleocoordinates of fossil collections. We find that beta diversity is spatially dependent at local to regional scales, regardless of the metric or spatial scaling utilized, and that spatial standardization significantly changes apparent temporal trends of beta diversity and, therefore, inferences about processes driving diversity change.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.nvx0k6dqd

References

Literature Cited

Aberhan, M., and Kiessling, W.. 2012. Phanerozoic marine biodiversity: a fresh look at data, methods, patterns and processes. Pp. 322 in Talent, J. A., ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Alroy, J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.CrossRefGoogle Scholar
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., and Davies, K. F.. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14:1928.CrossRefGoogle ScholarPubMed
Antão, L. H., McGill, B., Magurran, A. E., Soares, A. M., and Dornelas, M.. 2019. β-diversity scaling patterns are consistent across metrics and taxa. Ecography 42:10121023.CrossRefGoogle Scholar
Barnosky, A. D., Carrasco, M. A., and Davis, E. B.. 2005. The impact of the species–area relationship on estimates of paleodiversity. PLoS Biology 3(8):e266.CrossRefGoogle ScholarPubMed
Barton, P. S., Cunningham, S. A., Manning, A. D., Gibb, H., Lindenmayer, D. B., and Didham, R. K.. 2013. The spatial scaling of beta diversity. Global Ecology and Biogeography 22:639647.CrossRefGoogle Scholar
Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19:134143.CrossRefGoogle Scholar
Baselga, A., and Leprieur, F.. 2015. Comparing methods to separate components of beta diversity. Methods in Ecology and Evolution 6:10691079.CrossRefGoogle Scholar
Baselga, A., and Orme, C. D. L.. 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3:808812.CrossRefGoogle Scholar
Beu, A. 2006. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 2. Biostratigraphically useful and new Pliocene to Recent bivalves. Journal of the Royal Society of New Zealand 36:151338.CrossRefGoogle Scholar
Beu, A. 2011. Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia). Journal of the Royal Society of New Zealand 41:1153.CrossRefGoogle Scholar
Beu, A. 2012. Marine Mollusca of the last 2 million years in New Zealand. Part 5. Summary. Journal of the Royal Society of New Zealand 42:147.CrossRefGoogle Scholar
Beu, A., and Maxwell, P. A.. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Paleontological Bulletin 58.Google Scholar
Beu, A. G., and Raine, J.. 2009. Revised descriptions of New Zealand Cenozoic Mollusca from Beu and Maxwell (1990). GNS Science Miscellaneous Series 27. GNS Science, Lower Hutt, New Zealand.Google Scholar
Beu, A., Alloway, B., Pillans, B., Naish, T., and Westgate, J.. 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 1: Revised generic positions and recognition of warm-water and cool-water migrants. Journal of the Royal Society of New Zealand 34:111265.CrossRefGoogle Scholar
Blowes, S. A., Supp, S. R., Antão, L. H., Bates, A., Bruelheide, H., Chase, J. M., Moyes, F., Magurran, A., McGill, B., and Myers-Smith, I. H.. 2019. The geography of biodiversity change in marine and terrestrial assemblages. Science 366:339345.CrossRefGoogle ScholarPubMed
Brocklehurst, N., Day, M. O., and Fröbisch, J.. 2018. Accounting for differences in species frequency distributions when calculating beta diversity in the fossil record. Methods in Ecology and Evolution 9:14091420.CrossRefGoogle Scholar
Burgman, M. A., and Fox, J. C.. 2003. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation Forum 6:1928.CrossRefGoogle Scholar
Close, R., Benson, R., Saupe, E., Clapham, M., and Butler, R.. 2020a. The spatial structure of Phanerozoic marine animal diversity. Science 368:420424.CrossRefGoogle Scholar
Close, R. A., Benson, R. B., Upchurch, P., and Butler, R. J.. 2017. Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification. Nature Communications 8:111.CrossRefGoogle ScholarPubMed
Close, R. A., Benson, R. B., Alroy, J., Carrano, M. T., Cleary, T. J., Dunne, E. M., Mannion, P. D., Uhen, M. D., and Butler, R. J.. 2020b. The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases. Proceedings of the Royal Society of London B 287:20200372.Google Scholar
Clowes, C. D, Crampton, J. S., Bland, K. J., Collins, K. S., Prebble, J. G., Raine, I. J, Strogen, D. P., Marianna, M. G.. 2020. The New Zealand Fossil Record File: a unique database of biological history. New Zealand Journal of Geology and Geophysics. doi: 10.1080/00288306.2020.1799827.Google Scholar
Cooper, A., and Cooper, R. A.. 1995. The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proceedings of the Royal Society of London B 261:293302.Google ScholarPubMed
Cooper, R. A., Maxwell, P. A., Crampton, J. S., Beu, A. G., Jones, C. M., and Marshall, B. A.. 2006. Completeness of the fossil record: estimating losses due to small body size. Geology 34:241244.CrossRefGoogle Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A.. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.CrossRefGoogle ScholarPubMed
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A., and Marshall, B. A.. 2006a. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand Eocene to Recent shelf molluscs. Palaios 21:86105.CrossRefGoogle Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M.. 2006b. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.CrossRefGoogle Scholar
Crampton, J. S., Foote, M., Cooper, R. A., Beu, A. G., and Peters, S. E.. 2011. The fossil record and spatial structuring of environments and biodiversity in the Cenozoic of New Zealand. Geological Society of London Special Publication 358:105122.CrossRefGoogle Scholar
Drakare, S., Lennon, J. J., and Hillebrand, H.. 2006. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters 9:215227.CrossRefGoogle ScholarPubMed
Fleming, C. A. 1975. The geological history of New Zealand and its biota. Pp. 186 in Kuschel, G., ed. Biogeography and ecology in New Zealand. Monographiae Biologicae 27. Springer, Dordrecht, Netherlands.Google Scholar
He, J., Kreft, H., Lin, S., Xu, Y., and Jiang, H.. 2018. Cenozoic evolution of beta diversity and a Pleistocene emergence for modern mammal faunas in China. Global Ecology and Biogeography 27:13261338.CrossRefGoogle Scholar
Hofmann, R., Tietje, M., and Aberhan, M.. 2019. Diversity partitioning in Phanerozoic benthic marine communities. Proceedings of the National Academy of Sciences USA 116:7983.CrossRefGoogle ScholarPubMed
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski’s question. Palaeontology 53:12371254.CrossRefGoogle Scholar
King, P. R. 2000. New Zealand's changing configuration in the last 100 million year: plate tectonics, basin development, and depositional setting. Pp. 131–145 in New Zealand Petroleum Conference proceedings. Ministry of Economic Development, Wellington.Google Scholar
King, P. R., Naish, T. R., Brown, G. H., Field, B. D., and Erdbrooke, S. W.. 1999. Cretaceous to recent sedimentary patterns in New Zealand. Lower Hutt, New Zealand: Institue of Geological & Nuclear Sciences Limited.Google Scholar
Kocsis, Á. T. 2020. icosa: global triangular and penta-hexagonal grids based on tessellated icosahedra, R package version 0.10.0. https://CRAN.R-project.org/package=icosa.Google Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J.. 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology 72:367382.CrossRefGoogle Scholar
Lamb, S. 2011. Cenozoic tectonic evolution of the New Zealand plate-boundary zone: a paleomagnetic perspective. Tectonophysics 509:135164.CrossRefGoogle Scholar
Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.CrossRefGoogle Scholar
Lennon, J. J., Koleff, P., GreenwooD, J. J., and Gaston, K. J.. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology 70:966979.CrossRefGoogle Scholar
MacArthur, R. H., and Wilson, E. O.. 2001. The theory of island biogeography. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Mueller, R. D.. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146:226250.CrossRefGoogle Scholar
McKnight, M. W., White, P. S., McDonald, R. I., Lamoreux, J. F., Sechrest, W., Ridgely, R. S., and Stuart, S. N.. 2007. Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology 5(10):e272.CrossRefGoogle ScholarPubMed
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H., and Zahirovic, S.. 2018. GPlates: building a virtual Earth through deep time. Geochemistry, Geophysics, Geosystems 19:22432261.CrossRefGoogle Scholar
Na, L., and Kiessling, W.. 2015. Diversity partitioning during the Cambrian radiation. Proceedings of the National Academy of Sciences USA 112:47024706.CrossRefGoogle ScholarPubMed
Oksanen, J., Blanchet, F. J., Friendly, M., Kindt, R., Legendre, P., McGlinn, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H., Szoecs, E., and Wagner, H. R.. 2007. vegan: community ecology package, R package version 2.5-6. https://CRAN.R-project.org/package=vegan.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Penny, A., and Kröger, B.. 2019. Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity. Nature Ecology and Evolution 3:16551660.CrossRefGoogle ScholarPubMed
Peters, S. E., and Heim, N. A.. 2011. Macrostratigraphy and macroevolution in marine environments: testing the common-cause hypothesis. Geological Society of London Special Publication 358:95104.CrossRefGoogle Scholar
Raine, J., Beu, A., Boyes, A., Campbell, H., Cooper, R., Crampton, J., Crundwell, M., Hollis, C., Morgans, H., and Mortimer, N.. 2015. New Zealand geological timescale NZGT 2015/1. New Zealand Journal of Geology and Geophysics 58:398403.CrossRefGoogle Scholar
R Development Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Scheiner, S. M. 2003. Six types of species-area curves. Global Ecology and Biogeography 12:441447.CrossRefGoogle Scholar
Sclafani, J. A., and Holland, S. M.. 2013. The species-area relationship in the Late Ordovician: a test using neutral theory. Diversity 5:240262.CrossRefGoogle Scholar
Sepkoski, J. J. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.CrossRefGoogle Scholar
Smith, A. B. 2001. Large–scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., Van Hinsbergen, D. J., Domeier, M., Gaina, C., and Tohver, E.. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114:325368.CrossRefGoogle Scholar
Tuomisto, H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:222.CrossRefGoogle Scholar
Tuomisto, H. 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:2345.CrossRefGoogle Scholar
Ulrich, W., and Almeida-Neto, M.. 2012. On the meanings of nestedness: back to the basics. Ecography 35:865871.CrossRefGoogle Scholar
Urban, M. C. 2015. Accelerating extinction risk from climate change. Science 348:571573.CrossRefGoogle ScholarPubMed
Veech, J. A., and Crist, T. O.. 2007. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16:650656.CrossRefGoogle Scholar
Vellend, M. 2001. Do commonly used indices of β-diversity measure species turnover? Journal of Vegetation Science 12:545552.CrossRefGoogle Scholar
Vermeij, G. J., and Leighton, L. R.. 2003. Does global diversity mean anything? Paleobiology 29:37.2.0.CO;2>CrossRefGoogle Scholar
Vilhena, D. A., and Smith, A. B.. 2013. Spatial bias in the marine fossil record. PLoS ONE 8(10):e74470.CrossRefGoogle ScholarPubMed
Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279338.CrossRefGoogle Scholar
Womack, T. M., Crampton, J. S., Hannah, M. J.. 2020. The Pull of the Recent revisited: negligible species level effect in a regional marine fossil record. Paleobiology. doi: 10.1017/pab.2020.32.CrossRefGoogle Scholar
Wright, D. H., Patterson, B. D., Mikkelson, G. M., Cutler, A., and Atmar, W.. 1997. A comparative analysis of nested subset patterns of species composition. Oecologia 113:120.CrossRefGoogle ScholarPubMed