Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:17:11.280Z Has data issue: false hasContentIssue false

Some distributional models for fossil animals

Published online by Cambridge University Press:  08 February 2016

John C. Tipper*
Affiliation:
Department of Geology, University College, Galway, Ireland

Abstract

Models for the areal distribution of marine animals may be formulated in such a way that their validity can be tested statistically. Five such models are described here: in each case the distributions of the individual taxa are made functions of depth of water, oceanicity, and substrate type.

The simplest model proposes that benthic species are substrate-dependent: it can be verified by a series of χ2 tests. Benthic species can also be seriated along an environmental gradient: this second model can be tested by using a Monte Carlo simulation procedure. The third model proposes that planktic species are to some degree stratified in the water column, and hence that their remains are distributed additively in the underlying sediments: tests on modern and sub-fossil data sets indicate that realistic versions of this model are probably valueless for most geological work. The final models are extensions of the additive model: they are used here to demonstrate the importance of selecting an appropriate model and, in particular, of knowing the mode of life of each species before the model is selected.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvariño, A. 1965. Chaetognaths. Oceanogr. Mar. Biol. Annu. Rev. 3:115194.Google Scholar
Bambach, R. K. and Plants, H. 1977. Community associations in changing environments: faunal analysis of vertical stratigraphic sequences. Geol. Soc. Am. Abstracts with Programs. 9:888889.Google Scholar
Bandy, O. L. 1956. Ecology of foraminifera in northeastern Gulf of Mexico. U.S. Geol. Surv. Prof. Pap. 274-G:179204.Google Scholar
Bandy, O. L. 1961. Distribution of foraminifera, radiolaria and diatoms in sediments of the Gulf of California. Micropaleontology. 7:121.CrossRefGoogle Scholar
Bandy, O. L. 1967. Cretaceous planktonic foraminiferal zonation. Micropaleontology. 13:131.CrossRefGoogle Scholar
Bandy, O. L. and Arnal, R. E. 1957. Distribution of Recent foraminifera off west coast of Central America. Bull. Am. Assoc. Petrol. Geol. 41:20372053.Google Scholar
Banse, K. 1964. On the vertical distribution of zooplankton in the sea. Progr. in Oceanogr. 2:55125.CrossRefGoogle Scholar
Barnes, C. R. and Fåhraeus, L. E. 1975. Provinces, communities, and the proposed nektobenthic habit of Ordovician conodontophorids. Lethaia. 8:133149.CrossRefGoogle Scholar
, A. W. H. 1960. Ecology of Recent planktonic foraminifera: Part 2—Bathymetric and seasonal distributions in the Sargasso Sea off Bermuda. Micropaleontology. 6:373392.CrossRefGoogle Scholar
, A. W. H. and Tolderlund, D. S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. Pp. 105149. In: Funnell, B. M. and Ridel, W. R., eds. The Micropalaeontology of Oceans. Cambridge University Press; Cambridge, England.Google Scholar
Benard, A. and van Elteren, Ph. 1953. A generalization of the method of m rankings. Proc. Kon. Akad. Weten. ser. A. 56:358369.Google Scholar
Berger, W. H. 1969. Ecologic patterns of living planktonic foraminifera. Deep-Sea Res. 16:124.Google Scholar
Berry, W. B. N. 1977. Ecology and age of graptolites from graywackes in eastern New York. J. Paleontol. 51:11021107.Google Scholar
Berry, W. B. N. and Boucot, A. J. 1972. Silurian graptolite depth zonation. 24th Internat. Geol. Congress, Section 7. Pp. 5965.Google Scholar
Boltovskoy, E. 1971. Planktonic foraminiferal assemblages of the epipelagic zone and their thanatocoenoses. Pp. 277288. In: Funnell, B. M. and Riedel, W. R., eds. The Micropalaeontology of Oceans. Cambridge University Press; Cambridge, England.Google Scholar
Bretsky, P. W. Jr. 1970. Upper Ordovician ecology of the central Appalachians. Bull. Peabody Mus. Nat. Hist. 34:1150.Google Scholar
Buzas, M. A. 1977. Review of: Boltovskoy, E. and R. Wright. Recent Foraminifera. Am. J. Sci. 277:671672.CrossRefGoogle Scholar
Doveton, J. H., Gill, D., and Tipper, J. C. 1976. Conodont distributions in the upper Pennsylvanian of eastern Kansas; binary pattern analyses and their paleoecological implications. Geol. Soc. Am. Abstracts with Programs. 8:842.Google Scholar
Druce, E. C. 1973. Upper Paleozoic and Triassic conodont distribution and the recognition of biofacies. In: Rhodes, F. H. T., ed. Conodont Paleozoology. Geol. Soc. Am. Spec. Pap. 141:191237.Google Scholar
Elderton, W. P. and Johnson, N. L. 1969. Systems of Frequency Curves. 216 pp. Cambridge Univ. Press; Cambridge, England.CrossRefGoogle Scholar
Elton, C. 1927. Animal Ecology. 207 pp. Sidgwick and Jackson; London.Google Scholar
Emery, K. O., Butcher, W. S., Gould, H. R., and Shepard, F. P. 1952. Submarine geology off San Diego, California. J. Geol. 60:511548.CrossRefGoogle Scholar
Fienberg, S. E. 1977. The Analysis of Cross-classified Categorical Data. 151 pp. MIT Press; Cambridge, Mass.Google Scholar
Gill, D. and Tipper, J. C. 1978. The adequacy of non-metric data in geology: tests using a divisive-omnithetic clustering technique. J. Geol. 86:241259.CrossRefGoogle Scholar
Harbaugh, J. W. and Bonham-Carter, G. 1970. Computer Simulation in Geology. 575 pp. Wiley; New York.Google Scholar
Heckel, P. H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America. Bull Am. Assoc. Petrol. Geol. 61:10451068.Google Scholar
Heckel, P. H. and Baesemann, J. F. 1975. Environmental interpretation of conodont distribution in upper Pennsylvanian (Missourian) megacyclothems in eastern Kansas. Bull. Am. Assoc. Petrol. Geol. 59:486509.Google Scholar
Jackson, J. B. C. 1972. The ecology of the molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Mar. Biol. 24:304337.CrossRefGoogle Scholar
Johnson, R. G. 1962. Interspecific associations in Pennsylvanian fossil assemblages. J. Geol. 70:3255.CrossRefGoogle Scholar
Jones, J. I. 1967. Significance of distribution of planktonic foraminifera in the Equatorial Atlantic Undercurrent. Micropaleontology. 13:489501.CrossRefGoogle Scholar
Jones, J. I. 1968. The relationship of planktonic foraminiferal populations to water masses in the western Caribbean and Lower Gulf of Mexico. Bull. Mar. Sci. 18:946982.Google Scholar
Jones, N. S. 1950. Marine bottom communities. Biol. Rev. 25:283313.CrossRefGoogle Scholar
Kendall, D. G. 1963. A statistical approach to Flinders Petrie's sequence-dating. Bull. Internat. Stat. Inst. 40:657680.Google Scholar
Kendall, D. G. 1971. Seriation from abundance matrices. Pp. 215252. In: Hodson, F. R., Kendall, D. G., and Tǎutu, P., eds. Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press; Edinburgh.Google Scholar
Kendall, M. G. 1970. Rank Correlation Methods. 202 pp. Griffin; London.Google Scholar
Klapper, G. and Barrick, J. E. 1978. Conodont ecology: pelagic versus benthic. Lethaia. 11:1523.CrossRefGoogle Scholar
Macnaughton-Smith, P. 1965. Some statistical and other numerical techniques for classifying individuals. Home Office Studies in the Causes of Delinquency and the Treatment of Offenders. Home Office Res. Unit Report.33 pp. H.M.S.O.; London.Google Scholar
Margalef, R. 1968, Perspectives in Ecological Theory. 111 pp. Univ. Chicago Press; Chicago.Google Scholar
Maxwell, A. E. 1961. Analysing Qualitative Data. 163 pp. Methuen; London.Google Scholar
Merrill, G. K. 1973. Pennsylvanian conodont paleoecology. In: Rhodes, F. H. T., ed. Conodont Paleozoology. Geol. Soc. Am. Spec. Pap. 141:239274.Google Scholar
Merrill, G. K. and Martin, M. D. 1976. Environmental control of conodont distribution in the Bond and Mattoon formations (Pennsylvanian, Missourian), northern Illinois. In: Barnes, C. R., ed. Conodont Paleoecology. Geol. Assoc. Canada Spec. Pap. 15:243271.Google Scholar
Merrill, G. K. and von Bitter, P. H. 1976. Revision of conodont biofacies nomenclature and interpretations of environmental controls in Pennsylvanian rocks of eastern and central North America. Life Sci. Contrib. Royal Ontario Mus. 108:146.Google Scholar
Michael, E. L. 1911. Classification and vertical distribution of the Chaetognatha of the San Diego region. Univ. Calif. Publ. Zool. 8:21186.Google Scholar
Möbius, K. 1883. The oyster and oyster-culture. U.S. Comm. of Fish and Fisheries, Report of Commissioner for 1880. 8:683824.Google Scholar
Moore, H. B. 1949. The zooplankton of the upper waters of the North Atlantic. Bull. Bingham Oceanogr. Coll. 12:197.Google Scholar
Moore, H. B. 1958. Marine Ecology. 493 pp. Wiley; New York.Google Scholar
Moore, R. C. 1964. Paleoecological aspects of Kansas Pennsylvanian and Permian cyclothems. Bull. Kansas Geol. Surv. 169:287380.Google Scholar
Murray, J. W. 1973. Distribution and Ecology of Living Benthic Foraminiferids. 274 pp. Crane Russak; New York.Google Scholar
Murray, J. W. 1976. A method of determining proximity of marginal seas to an ocean. Mar. Geol. 22:103119.CrossRefGoogle Scholar
Parker, F. L. 1965. Irregular distributions of planktonic foraminifera and stratigraphic correlation. Prog, in Oceanogr. 3:267272.CrossRefGoogle Scholar
Phleger, F. B. 1951. Foraminifera distribution. In: Ecology of foraminifera, northwest Gulf of Mexico. Geol. Soc. Am. Mem. 46:188.Google Scholar
Phleger, F. B. 1960. Ecology and Distribution of Recent Foraminifera. 297 pp. Johns Hopkins Press; Baltimore, Maryland.Google Scholar
Pielou, E. C. 1975. Ecological Diversity. 165 pp. Wiley; New York.Google Scholar
Rogers, M. J. 1976. An evaluation of an index of affinity for comparing assemblages, in particular of foraminifera. Palaeontology. 19:503515.Google Scholar
Russell, F. S. 1939. Hydrographical and biological conditions in the North Sea as indicated by planktonic organisms. Internat. Council for the Exploration of the Sea; Journal du Conseil. 14:171192.CrossRefGoogle Scholar
Rypka, E. W. 1971. Truth table classification and identification. Space Life Sci. 3:135156.Google ScholarPubMed
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. Am. Nat. 102:243282.CrossRefGoogle Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. 568 pp. Oliver and Boyd; Edinburgh.Google Scholar
Schopf, T. J. M., ed. 1972. Models in Paleobiology. 250 pp. Freeman, Cooper; San Francisco, California.Google Scholar
Schwarzacher, W. 1975. Sedimentation Models and Quantitative Stratigraphy. 382 pp. Elsevier; Amsterdam.Google Scholar
Seddon, G. and Sweet, W. C. 1971. An ecologic model for conodonts. J. Paleontol. 45:869880.Google Scholar
Steele, J. H. 1974. The Structure of Marine Ecosystems. 128 pp. Harvard Univ. Press; Cambridge, Mass.CrossRefGoogle Scholar
Steele, J. H. and Mullin, M. M. 1977. Zooplankton dynamics. In: Goldberg, E. D., McCave, I. N., O'Brien, J. J., and Steele, J. H., eds. The Sea. 6:857890. Wiley; New York.Google Scholar
Stehli, F. G. 1966. Some applications of foraminiferal ecology. Pp. 223240. In: van Hinte, J. E., ed. Proc. 2nd West African Micropaleontol. Colloq., 1965. Brill; Leiden.Google Scholar
Thomson, J. M. 1947. The Chaetognatha of southeastern Australia. Commonwealth of Australia, Council for Sci. and Indust. Res. Bull. 222:143.Google Scholar
Tipper, J. C. 1979. An ALGOL program for dissimilarity analysis: a divisive-omnithetic clustering technique. Computers and Geo-sciences. 5:113.CrossRefGoogle Scholar
Tipper, J. C.Simulation of plankton distribution using Pearson curves. In preparation.Google Scholar
Uchio, T. 1960. Ecology of living benthonic foraminifera from the San Diego, California, area. Cushman Foundat. for Foraminiferal Res. Spec. Publ. 5:172.Google Scholar
von Bitter, P. H. 1972. Environmental control of conodont distribution in the Shawnee Group (upper Pennsylvanian) of eastern Kansas. Univ. Kansas Paleontol. Contrib. Article 59:1105.Google Scholar
Walker, K. R. and Bambach, R. K. 1971. The significance of fossil assemblages from fine-grained sediments: time-averaged communities. Geol. Soc. Am. Abstracts with Programs. 3:783784.Google Scholar
Weddige, K. and Ziegler, W. 1976. The significance of Icriodus: Polygnathus ratios in limestones from the type Eifelian, Germany. In: Barnes, C. R., ed. Conodont Paleoecology. Geol. Assoc. Canada Spec. Pap. 15:187199.Google Scholar
Wiebe, P. H. and Holland, W. R. 1968. Plankton patchiness: effects on repeated net tows. Limnol. Oceanogr. 13:315321.CrossRefGoogle Scholar