Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T18:54:15.532Z Has data issue: false hasContentIssue false

Size evolution of the lower incisor of Microtia, a genus of endemic murine rodents from the late Neogene of Gargano, southern Italy

Published online by Cambridge University Press:  08 February 2016

Virginie Millien
Affiliation:
Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California 93106
Jean-Jacques Jaeger
Affiliation:
Institut des Sciences de l'Evolution, Université Montpellier II, cc 64 place Eugène Bataillon, 34095 Montpellier cedex 5, France

Abstract

The Neogene paleoisland from the area of Gargano, Italy, has yielded numerous fossil vertebrates, some of them showing extraordinary morphological peculiarities due to island evolution. Among them, Microtia (Freudenthal 1976) is the dominant rodent genus in the Gargano palaeofauna and is represented by at least three evolutionary lineages. The incisors are used to describe the size evolution in these lineages, and we come to the conclusion that these lineages did not follow the same evolutionary trend: two of them evolve toward larger size, while the third one shows a slight decrease in size. In addition, we describe the evolution of the curvature of the lower incisor, compared with that of body-size. The evolution of Microtia is characterized by a specialization for burrowing, which may be accompanied by either an increase or a decrease in size. Finally, we propose that the evolutionary change among these three sympatric lineages allowed Microtia to minimize competition between species, by avoiding size overlaps.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbazzi, L., Masini, F., and Torre, D. 1993. Evolutionary patterns in the first lower molar of the endemic murid Microtia. Quaternary International 19:6370.CrossRefGoogle Scholar
Abbazzi, L., Benvenuti, M., Boschian, G., Dominici, S., Masini, F., Mezzabotta, C., Piccini, L., Rook, L., Valleri, G., and Torre, D. 1996. Revision of the Neogene and Pleistocene of the Gargano region (Apulia, Italy). The marine and continental successions and the mammal faunal assemblages in an area between Apricena and Poggio Imperiale (Foggia). Memorie della Società Geologica Italiana 51:383402.Google Scholar
Adler, G. H., and Levins, R. 1994. The island syndrome in rodent populations. Quaterly Review of Biology 69:473490.CrossRefGoogle ScholarPubMed
Agrawal, V. C. 1967. Skull adaptations in fossorial rodents. Mammalia 31:300312.CrossRefGoogle Scholar
Ballmann, P. 1973. Fossile Vogel aus dem Neogen der Halbinsel Gargano (Italien). Scripta Geologica 17:175.Google Scholar
Ballmann, P. 1976. Fossile Vogel aus dem Neogen der Halbinsel Gargano (Italien), zweiter Teil. Scripta Geologica 38:159.Google Scholar
Barnoski, A. D. 1993. Mosaic evolution at the population level in Microtus pennsylvanicus. Pp. 2459in Martin, R. A. and Barnoski, A. D., eds. Morphological change in Quaternary mammals of North America. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Barton, D. E., and David, F. N. 1956. Some notes on ordered random intervals. Journal of the Royal Statistical Society B 18:7994.Google Scholar
Biknevicius, A. R., McFarlane, D. A., and McPhee, R. D. E. 1993. Body size in Amblyrhiza inundata (Rodentia: Caviomorpha), an extinct megafaunal rodent from Anguilla Bank, West Indies: estimates and implications. American Museum Novitates 3079:125.Google Scholar
Blackburn, T. M., and Gaston, K. J. 1996. On being the right size: different definitions of ‘right’. Oikos 75:551557.CrossRefGoogle Scholar
Brown, J. H. 1975. Geographical ecology of desert rodents. Pp. 315341in Cody, M. L. and Diamond, J. M., eds. Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Brown, J. H., and Lieberman, G. A. 1973. Resource utilization and coexistence of seed-eating desert rodents in sand dune habitats. Ecology 54:788797.CrossRefGoogle Scholar
Brown, J. H., Marquet, P. A., and Taper, M. L. 1993. Evolution of body size: consequences of an energetic definition of fitness. American Naturalist 142:573584.CrossRefGoogle ScholarPubMed
Butler, P. M. 1980. The giant erinaceid insectivore, Deinogalerix Freudenthal, from the Upper Miocene of Gargano, Italy. Scripta Geologica 57:172.Google Scholar
Case, T. J. 1978. A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:118.CrossRefGoogle Scholar
Chown, S. L., and Gaston, K. J. 1997. The species-body size distribution: energy, fitness and optimality. Functional Ecology 11:365375.CrossRefGoogle Scholar
Creighton, G. K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of the Zoological Society of London 191:435443.CrossRefGoogle Scholar
Daams, R., and Freudenthal, M. 1985. Stertomys laticrestatus, a new glirid (dormice, Rodentia) from the insular fauna of the Gargano (Prov. of Foggia, Italy). Scripta Geologica 77:2127.Google Scholar
Damuth, J. 1993. Cope's rule, the island rule and the scaling of mammalian population density. Nature 365:748750.CrossRefGoogle ScholarPubMed
Damuth, J., and McFadden, B. J. 1990. Body size and its estimation. Pp. 110in Damuth, J. and McFadden, B. J., eds. Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge.Google Scholar
Dayan, T., and Simberloff, D. 1994. Morphological relationships among coexisting heteromyids: an incisive dental character. American Naturalist 143:462477.CrossRefGoogle Scholar
Dayan, T., and Simberloff, D. 1998. Size patterns among competitors: ecological character displacement and character release in mammals, with special reference to island populations. Mammal Review 28:99124.CrossRefGoogle Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. 1989. Inter- and intraspecific character displacement in mustelids. Ecology 70:15261539.CrossRefGoogle Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. 1990. Feline canines: community-wide character displacement among the small cats of Israël. American Naturalist 136:3957.CrossRefGoogle Scholar
De Giuli, C., and Torre, D. 1984. Species interrelationships and evolution in the Pliocene endemic faunas of Apricena (Gargano Peninsula—Italy). Geobios Mémoire Spécial 8:379383.CrossRefGoogle Scholar
De Giuli, C., Masini, F., and Torre, D. 1987. Endemism and biochronological reconstructions: the Gargano case history. Bollettino della Società Paleontologica Italiana 25:267276.Google Scholar
Foster, J. B. 1964. Evolution of mammals on islands. Nature 202:234235.CrossRefGoogle Scholar
Freudenthal, M. 1972. Deinogalerix koenigswaldi nov. gen., nov. spec., a giant insectivore from the Neogene of Italy. Scripta Geologica 14:111.Google Scholar
Freudenthal, M. 1976. Rodent stratigraphy of some Miocene fissure fillings in Gargano (prov. Foggia, Italy). Scripta Geologica 37:120.Google Scholar
Freudenthal, M. 1985. Cricetidae (Rodentia) from the Neogene of Gargano (Prov. of Foggia, Italy). Scripta Geologica 77:2976.Google Scholar
Gingerich, P. D., Smith, B. H., and Rosenberg, K. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58:81100.CrossRefGoogle ScholarPubMed
Heaney, L. R. 1978. Island area and body size of insular mammals: evidence from the tri-colored squirrel (Callosciurus prevosti) of southeast Asia. Evolution 32:2944.Google ScholarPubMed
Hutterer, R., Lopez-Martinez, N., and Michaux, J. 1988. A new rodent from Quaternary deposit of the Canary Islands and its relationships with Neogene and recent murids of Europe and Africa. Palaeovertebrata 18:241262.Google Scholar
Kozlowski, J. 1996. Energetic definition of fitness? Yes, but not that one. American Naturalist 147:10871091.CrossRefGoogle Scholar
Lawlor, T. E. 1982. The evolution of body size in mammals: evidence from insular populations in Mexico. American Naturalist 119:5472.CrossRefGoogle Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d'Europe Occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 16:1110.Google Scholar
Leinders, J. 1984. Hoplitomerycidae fam. nov. (Ruminantia, Mammalia) from Neogene fissure fillings in Gargano, Italy, Part 1. Scripta Geologica 70:151.Google Scholar
Martin, R. A. 1990. Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. Pp. 4968in Damuth, J. and McFadden, B. J., eds. Body size in mammalian paleobiology: estimations and biological implications. Cambridge University Press, Cambridge.Google Scholar
Mazza, P. 1987a. Prolagus (Ochotonidae, Lagomorpha, Mammalia) from Neogene fissure fillings in Gargano (Southern Italy). Bollettino della Società Paleontologica Italiana 25:159185.Google Scholar
Mazza, P. 1987b. Further data on the Gargano (Southern Italy) Prolagus (Ochotonidae, Lagomorpha, Mammalia). Bollettino della Società Paleontologica Italiana 25:203211.Google Scholar
Michaux, J., Lopez-Martinez, N., and Hernadez-Pachero, J. J. 1996. A 14C dating of Canariomys bravoi (Mammalia, Rodentia), the extinct giant rat from Tenerife (Canary Islands, Spain), and the recent history of the endemic mammals in the archipelago. Vie et Milieu 46:261266.Google Scholar
Millien-Parra, V. 2000. Species differentiation among muroid rodents on the basis of their lower incisor size and shape: ecological and taxonomical implications. Mammalia 64:221239.CrossRefGoogle Scholar
Millien-Parra, V., and Loreau, M. 2000. Community composition and size structure of murid rodents in relation to the biogeography of the Japanese archipelago. Ecography 23:413423.CrossRefGoogle Scholar
Musser, G. G. 1981. The giant rat of Flores and its relatives east of Borneo and Bali. Bulletin of the American Museum of Natural History 169:1175.Google Scholar
Musser, G. G., and Newcomb, C. 1983. Malaysian murids and giant rat of Sumatra. Bulletin of the American Museum of Natural History 174:327598.Google Scholar
Parra, V., and Jaeger, J.-J. 1998. Estimation de la taille et du poids corporel chez les rongeurs (Rodentia, Mammalia) à partir de la taille des incisives. Comptes Rendus de l'Académie des Sciences, série IIa, Sciences de la Terre et des Planètes 326:7985.Google Scholar
Parra, V., Loreau, M., and Jaeger, J.-J. 1999a. Incisor size and community structure in rodents: two tests of the role of competition. Acta Oecologica 20:93101.CrossRefGoogle Scholar
Parra, V., Jaeger, J.-J., and Bocherens, H. 1999b. The skull of Microtia, an extinct burrowing murine rodent of the late Neogene Gargano palaeoisland. Lethaia 32:89100.CrossRefGoogle Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, London.CrossRefGoogle Scholar
Simberloff, D., and Boecklen, W. 1981. Santa Rosalia reconsidered: size ratios and competition. Evolution 35:12061228.CrossRefGoogle ScholarPubMed
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed.W. H. Freeman, New York.Google Scholar
Sondaar, P. Y. 1977. Insularity and its effect on mammal evolution. Pp. 671705in Hecht, M. K. and Goody, P. C., eds. Major patterns in vertebrate evolution. Plenum, New York.CrossRefGoogle Scholar
Thaler, L. 1973. Nanisme et gigantisme insulaire. La Recherche 37:741750.Google Scholar
Torre, D. 1986. Phyletic gradualism in populations evolving in small isolated areas: an example from the fossil mammals of the Gargano peninsula (Italy). Bollettino della Società Paleontologica Italiana 25:101105.Google Scholar
Valverde, J. A. 1964. Remarques sur la structure et l'évolution des communautés de vertébrés terrestres I. Structure d'une communaute II. Rapports entre prédateurs et proies. La Terre et la Vie 2:121154.Google Scholar
Van Valen, L. 1973. Pattern and the balance of nature. Evolutionary Theory 1:3149.Google Scholar
Vianey-Liaud, M., Comte, B., and Leveque, F. 1995. Le Garouillas et les sites contemporains (Oligocene, MP25) des phosphorites du Quercy (Lot, Lot-et-Garonne, France) et leurs faunes de vertébrés. 13. Rongeurs. Palaeontographica, Abteilung A 236:257326.CrossRefGoogle Scholar
Willemsen, G. F. 1983. Paralutra garganensis sp. nov. (Mustelidae, Lutrinae), a new otter from the Miocene of Gargano, Italy. Scripta Geologica 72:18.Google Scholar
Zafonte, F., and Masini, F. 1992. Enamel structure evolution in the first lower molar of the endemic murids of the genus Microtia (Pliocene, Gargano, Italy). Bollettino della Società Paleontologica Italiana 31:335349.Google Scholar