Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:10:01.551Z Has data issue: false hasContentIssue false

Sharovipteryx, a reptilian glider?

Published online by Cambridge University Press:  08 April 2016

Carl Gans
Affiliation:
Department of Biological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
Ilja Darevski
Affiliation:
Zoological Institute, 199164 Leningrad, USSR
Leonid P. Tatarinov
Affiliation:
Paleontological Institute, USSR Academy of Sciences, Profsoyuznaya 113, 117321 Moscow, USSR

Abstract

The unique holotype of the Triassic reptile Sharovipteryx (initially Podopteryx) mirabilis has been reexamined and redescribed, correcting the original account. It is a small lizard-like reptile with an elongate head and densely tubular femur and tibia each longer than the (estimated) intergirdle distance. (Part of the pectoral region has been lost and the remnants remain encased in the matrix.) The matrix retains the impression of portions of the integument, including a patagium that reached from the hindlimbs to the base of the tail. Unlike the original account, the patagium did not extend to the pectoral limbs. Experiments with models indicate that Sharovipteryx could have maintained a shallow glide if the femora were held at a shallow angle to the vertebral column and the tibia and feet extended out at right angles to it, thus stretching the integument. The pectoral limbs (with or without a fringing membrane) might have produced a variable canard; alternatively vertical bending of the tail could have applied drag, each making the glide more stable.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Colbert, E. H. 1970. The Triassic gliding reptile lcarosaurus. Bull. Am. Mus. Nat. Hist. 143:85142.Google Scholar
Cowen, R. 1981. Homonyms of Podopteryx. J. Paleont. 55:483.Google Scholar
Dobruskina, I. A. 1970. Age of the Madygen site in relation to the Permian-Triassic boundary in Central Asia. [In Russian.] Sovjet. Geol. 1970(12):1628.Google Scholar
Dobruskina, I. A. 1976. Correlation of continental deposits of the Triassic. [In Russian.] Sovjet. Geol. 1976(3):3445.Google Scholar
Dobruskina, I. A. 1980. Stratigraphic position of the Triassic plant-bearing beds of Eurasia. [In Russian.] Akad. Nauk. SSSR, Trudy Pal. Inst. 346:1160.Google Scholar
Evans, S. E. 1982. The gliding reptiles of the Upper Permian. Zool. J. Linn. Soc. Lond. 76:97123.Google Scholar
Gans, C., Gillingham, J. C., and Clark, D. L. 1984. Courtship, mating and male combat in tuatara, Sphenodon punctatus. J. Herpetol. 18:194197.Google Scholar
Gow, C. E. 1975. The morphology and relationships of Youngina capensis Broom and Prolacerta broomi Parrington. Palaeont. Afr. 18:89131.Google Scholar
Haubold, H. and Buffetaut, E. 1987. A new interpretation of Longisquama insignis, an enigmatic reptile from the Upper Triassic of Central Asia. C.r. Acad. Sci. Paris, Sér. II. 305:6570.Google Scholar
Maynard Smith, J. 1952. Importance of the nervous system in the evolution of flight. Evolution 6:127.Google Scholar
Oliver, J. A. 1951. “Gliding” in amphibians and reptiles, with a remark on an arboreal adaptation in the lizard, Anolis carolinensis carolinensis Voigt. Amer. Nat. 85:171176.Google Scholar
Olsen, P. E. 1979. A new aquatic eosuchian from the Newark supergroup (Late Triassic-Early Jurassic) of North Carolina and Virginia. Postilla. 176:114.Google Scholar
Padian, K., ed. 1986. The origin of birds and the evolution of flight. Mem. Cal. Acad. Sci. 8:1198.Google Scholar
Pennycuick, C. J. 1986. Mechanical constraints on the evolution of flight. Mem. Cal. Acad. Sci. 8:8398.Google Scholar
Rayner, J. M. V. 1981. Flight adaptations in vertebrates. Symp. Zool. Soc. Lond. 48:137172.Google Scholar
Rayner, J. M. V. 1985. Cursorial gliding in proto-birds. An expanded version of a discussion contribution. Pp. 289292. In: Hecht, M. K., et al., eds. The Beginnings of Birds. Proc. Internat. Archaeopteryx Conference, Eichstätt.Google Scholar
Ruben, J. A. and Battalia, D. E. 1979. Aerobic and anaerobic metabolism during activity in small rodents. J. Exp. Zool. 208:7376.Google Scholar
Sauvage, H. E. 1881. Nouvelles recherches sur les poissons fossiles découverts par M. Alby à Licata en Sicilie. Ann. Sci. Géol. 11:150.Google Scholar
Schaller, D. 1985. Wing evolution. Pp. 333348. In: Hecht, M. K., et al., eds. The Beginnings of Birds. Proc. Internat. Archaeopteryx Conference, Eichstätt.Google Scholar
Schi⊘tz, A. and Vols⊘e, H. 1959. The gliding flight of Holaspis guentheri Gray, a west-African lacertid. Copeia. 1959(3):259260.Google Scholar
Selys-Longchamps, E. de 1871. Aperçu statistique sur les Névroptères odonates. Trans. Ent. Soc. London. 1871(3):409416.Google Scholar
Sharov, A. G. 1971. New flying reptiles from the Mesozoic of Kazakhstan and Kirghizia. Akad. Nauk. SSSR, Trudy Paleont. Inst. 130:104113.Google Scholar
Vakhrameev, V. A., Dohruskina, I. A., Meyen, S. V., and Zalinskaja, E. D. 1978. Paläozoische und mesozoische Floren Eurasiens. G. Fischer, Jena.Google Scholar
Wild, R. 1973. Tanystropheus longobardicus (Bassani) (Neue Ergebnisse). In: Kuhn-Schnyder, E. and Peter, B., eds. Die Triasfauna der Tessiner Kalkalpen. Schweiz. Paläontol. Abh. 95:1162.Google Scholar