Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T15:00:45.955Z Has data issue: false hasContentIssue false

Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem

Published online by Cambridge University Press:  08 April 2016

Richard K. Bambach*
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0420

Extract

The biomass of marine consumers increased during the Phanerozoic. This is indicated by the increase in both fleshiness and average size of individuals of dominant organisms, coupled with the conservative estimate that dominant organisms in the Cenozoic are at least as abundant as those in the Paleozoic. As faunal dominants replaced one another during the Phanerozoic the general level of metabolic activity increased due to both increase in basal metabolism and increase in more energetic modes of life. This demonstrates that the expenditure of energy by marine consumers has increased with time as well. There is a time lag in the expansion of more energetic life habits from environmental settings known to have high food supply into regions expected to have lower rates of food supply (e.g., bivalves into offshore carbonate environments or deep burrowing deposit feeders into the full range of shelf environments), and a time lag in diversification of energetic modes of life (e.g., predation or deep burrowing deposit feeding) for long intervals after they first appeared. This suggests that the supply of food increased across the whole spectrum of marine habitats during the Phanerozoic. The great diversification of specialized predators especially suggests that biomass increase took place all the way down the food chain to the level of primary production. The development of plant life on land and the impact of land vegetation on stimulating productivity in coastal marine settings, coupled with the transfer of organic material and nutrients from coastal regions to the open ocean, and the increase through time in diversity and abundance of oceanic phytoplankton all point to increased productivity in the oceans through the Phanerozoic.

Type
Research Article
Copyright
The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T. 1985. Storm deposits and systems. Springer, Berlin.Google Scholar
Alexander, R. R. 1981. Predation scars preserved in Chesterian brachiopods: probable culprits and evolutionary consequences for articulates. Journal of Paleontology 55:192203.Google Scholar
Alexander, R. R. 1986. Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods. Journal of Paleontology 60:273285.CrossRefGoogle Scholar
Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. Pp. 53102in McCall, P. M. and Tevesz, M. H. S., eds. Animal-sediment relations. Plenum, New York.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1990. Infauna and epifauna. Pp. 4149in Briggs and Crowther 1990.Google Scholar
Bambach, R. K. 1971. Diversity of life habits in middle Paleozoic Bivalvia. Geological Society of America, Abstracts with Programs 3:292.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746in Tevesz and McCall 1983.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Bambach, R. K., and Sepkoski, J. J. Jr., 1979. The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic. Geological Society of America, Abstracts with Programs 11:383.Google Scholar
Bambach, R. K. 1992. Historical evolutionary information in the traditional Linnean hierarchy. P. 16in Fifth American Paleontological Convention Abstracts and Program. Paleontological Society Special Publication Number 6.Google Scholar
Baumiller, T. K. 1992. The energetics of passive suspension feeding: ecological and evolutionary consequences for crinoids. P. 20in Fifth North American Paleontological Convention Abstracts and Program. Paleontological Society Special Publication Number 6.Google Scholar
Bengston, S., and Zhao, Y. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257:367369.Google Scholar
Benton, M. J. 1985. Patterns in the diversification of Mesozoic non-marine tetrapods and problems in historical diversity analysis. P. 185202in Cope, J. C. W. and Skelton, P. W., eds. Evolutionary case histories from the fossil record. The Palaeontological Association, Special Papers in Paleontology Number 33.Google Scholar
Berger, W. H., and Wefer, G. 1991. Productivity of the glacial ocean: discussion of the iron hypothesis. Limnology and Oceanography 36:18991918.CrossRefGoogle Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G., eds. 1989. Productivity of the ocean: present and past. Wiley, New York.Google Scholar
Berner, R. A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science 291:339376.Google Scholar
Berner, R. A., and Canfield, D. E. 1989. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science 289:333361.Google Scholar
Bluth, G. J., and Kump, L. R. 1991. Phanerozoic paleogeology. American Journal of Science 291:284308.CrossRefGoogle Scholar
Boardman, R. S., Cheetham, A. H., and Rowell, A. J., eds. 1987. Fossil invertebrates. Blackwell Scientific, Palo Alto, California.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.Google Scholar
Boyd, D. W., and Newell, N. D. 1972. Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. Journal of Paleontology 46:114.Google Scholar
Brand, L. E. 1991. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnology and Oceanography 36:17561771.Google Scholar
Brandt, D. S. 1986. Preservation of event beds through time. Palaios 1:9296.Google Scholar
Brett, C. E. 1990. Marine [predation]. Pp. 368372in Briggs and Crowther 1990.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology 22:631664.Google Scholar
Briggs, D. E. G., and Crowther, P. R., eds. 1990. Paleobiology: a synthesis. Blackwell Scientific, Oxford.Google Scholar
Bruton, H. 1966. Predation and shell damage in a Visean brachiopod fauna. Palaeontology 9:355359.Google Scholar
Buehler, E. J. 1969. Cylindrical borings in Devonian shells. Journal of Paleontology 43:1291.Google Scholar
Burton, J. D. 1980. Factors limiting preliminary production: nutrients. Pp. 297345in Raymont, J. E. G., ed. Plankton productivity in the oceans, 2d ed., Vol. 1: phytoplankton. Pergamon, Oxford.Google Scholar
Calef, C. E., and Bambach, R. K. 1973. Low nutrient levels in lower Paleozoic (Cambrian-Silurian) oceans. Geological Society of America, Abstracts with Programs 5:565.Google Scholar
Calvert, S. E., and Pedersen, T. F. 1992. Organic carbon accumulation and preservation in marine sediments: how important is anoxia? Pp. 231263in Whelan, J. K. and Farrington, J. W., eds. Organic matter: productivity, accumulation, and preservation in recent and ancient sediments. Columbia University Press, New York.Google Scholar
Carriker, M. R., and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. United States Geological Survey Professional Paper 593-B.Google Scholar
Carter, R. M. 1967. On the biology and paleontology of some predators of bivalved mollusks. Palaeogeography, Palaeoclimatology, Palaeoecology 4:2965.Google Scholar
Chatterton, B. D. E., and Whitehead, H. L. 1987. Predatory borings in the inarticulate brachiopod Artiotreta from the Silurian of Oklahoma. Lethaia 20:6774.Google Scholar
Cisne, J. L. 1974. Trilobites and the origin of arthropods. Science 186:1318.CrossRefGoogle ScholarPubMed
Cisne, J. L. 1975. Anatomy of Triarthrus and the relationships of the trilobites. Fossils and Strata 4:4563.Google Scholar
Clifton, H. E. 1971. Orientation of empty pelecypod shells and shell fragments in quiet water. Journal of Sedimentary Petrology 41:671682.Google Scholar
Colbath, S. 1985. Gastropod predation and depositional environments of the molluscan communities for the Miocene Astoria Formation at Beverly Beach State Park, Oregon. Journal of Paleontology 59:849869.Google Scholar
Collinson, M. E. 1990. Angiosperms. Pp. 7984in Briggs and Crowther 1990.Google Scholar
Conway Morris, S. 1977. Fossil priapulid worms. The Palaeontological Association, Special Papers in Palaeontology Number 20.Google Scholar
Crimes, T. P. 1974. Colonisation of the early ocean floor. Nature 248:328330.Google Scholar
Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London. [Facsimile edition—1964. Harvard University Press, Cambridge, Massachusetts]Google Scholar
Degens, E. T., and Mopper, K. 1976. Factors controlling the distribution and early diagenesis of organic material in marine sediments. Pp. 5995in Riley, J. P. and Chester, R., eds. Chemical oceanography, 2d ed., Vol. 6. Academic Press, London.Google Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology 16:233236.Google Scholar
Droser, M. L. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.Google Scholar
Duce, R. A., and Tindale, N. W. 1991. Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography 36:17151726.Google Scholar
Edwards, D., and Burgess, N. D. 1990. Plants. Pp. 6064in Briggs and Crowther 1990.Google Scholar
Estes, J. A., and Steinberg, P. D. 1988. Predation, herbivory and kelp evolution. Paleobiology 14:1936.CrossRefGoogle Scholar
Feduccia, A., and Tordoff, H. B. 1979. Feathers of Archaeopteryx: asymmetric vane indicates aerodynamic function. Science 203:10211022.Google Scholar
Gasiorowski, S. M. 1973. Less rhyncholites. Geobios 6:127196.CrossRefGoogle Scholar
Grassle, J. F., and Maciolek, N. J. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. The American Naturalist 139:313341.Google Scholar
Gregor, C. B. 1985. The mass-age distribution of Phanerozoic sediments. Pp. 284289in Snelling, N. J., ed. The chronology of the geological record. The Geological Society Memoir Number 10.Google Scholar
Jackson, T. A. 1975. “Humic” matter in the bitumen of pre-Phanerozoic and Phanerozoic sediments and its paleobiological significance. American Journal of Science 275:906953.CrossRefGoogle Scholar
Jordan, T. E., Correll, D. L., Miklas, J., and Weller, D. E. 1991. Nutrients and chlorophyll at the interface of a watershed and an estuary. Limnology and Oceanography 36:251267.Google Scholar
Jumars, P. A., and Wheatcroft, R. A. 1989. Responses of benthos to changing food quality and quantity, with a focus on deposit feeding and bioturbation. Pp. 235253in Berger et al. 1989.Google Scholar
Kabat, A. R. 1990. Predatory ecology of naticid gastropods with a review of shell boring predation. Malacologia 32:155193.Google Scholar
Kammer, T. W., and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology 13:379395.CrossRefGoogle Scholar
Kelley, P. H. 1991. Apparent cannibalism by Chesapeake Group naticid gastropods: a predictable result of selective predation. Journal of Paleontology 65:7579.CrossRefGoogle Scholar
Kidwell, S. M. 1986. Models for fossil concentrations: paleobiologic implications. Paleobiology 12:624.Google Scholar
Kidwell, S. M. 1988. Taphonomic comparison of passive and active continental margins: Neogene shell beds of the Atlantic coastal plain and northern Gulf of California. Palaeogeography, Palaeoclimatology, Palaeoecology 63:201224.Google Scholar
Kidwell, S. M. 1989. Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the Miocene of Maryland. Journal of Geology 97:124.CrossRefGoogle Scholar
Kidwell, S. M. 1990. Phanerozoic evolution of macroinvertebrate shell accumulations: preliminary data from the Jurassic of Britain. Pp. 309327in Miller, W. III, ed. Paleocommunity temporal dynamics: the long-term development of multispecies assemblages. The Paleontological Society Special Publication Number 5.Google Scholar
Kidwell, S. M., and Boscence, D. J. W. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 115209in Briggs, D. E. G. and Allison, P. A., eds. Taphonomy, releasing information from the fossil record. Plenum, New York.Google Scholar
Kidwell, S. M., Fürsich, F. T., and Aigner, T. 1986. Conceptual framework for the analysis and classification of fossil concentrations. Palaios 1:228238.CrossRefGoogle Scholar
Kitchell, J. A., Kitchell, J. F., Johnson, G. L., and Hunkins, K. L. 1978. Abyssal traces and megafauna: comparison of productivity, diversity and density in the Arctic and Antarctic. Paleobiology 4:171180.CrossRefGoogle Scholar
Kitchell, J. P., Boggs, C. H., Kitchell, J. F., and Rice, J. A. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology 7:533552.Google Scholar
Knoll, M. A., and James, W. C. 1987. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15:10991102.Google Scholar
Kohn, A. J. 1959. The ecology of Conus in Hawaii. Ecological Monographs 29:4790.Google Scholar
Kreisa, R., and Bambach, R. K. 1982. The role of storm processes in generating shell beds in Paleozoic shelf environments. Pp. 200207in Einsele, G. and Seilacher, A., eds. Cyclic and event stratification. Springer-Verlag, Berlin.Google Scholar
Krumbein, W. E., and Dyer, B. D. 1985. This planet is alive—weathering and biology, a multi-faceted problem. Pp. 143160in Drever, J. I., ed. The chemistry of weathering. D. Riedel, Dordrecht, Holland.CrossRefGoogle Scholar
Labandeira, C., and Beall, B. S. 1990. Arthropod terrestriality. Pp. 214256in Mikulic, D. C., convenor. Arthropod paleobiology. The Paleontological Society, Short Course in Paleontology Number 3.Google Scholar
LaBarbara, M. 1981. The ecology of Mesozoic Gryphaea, Exogyra and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean. Paleobiology 7:510526.Google Scholar
Larson, D. W., and Rhoads, D. C. 1983. The evolution of infaunal communities and sedimentary fabrics. Pp. 627648in Tevesz and McCall 1983.Google Scholar
Levinton, J. S., and Bambach, R. K. 1975. A comparative study of Silurian and recent deposit-feeding bivalve communities. Paleobiology 1:97124.Google Scholar
Lewis, W. M. Jr., 1986. Nitrogen and phosphorus runoff losses from a nutrient-poor tropical moist forest. Ecology 67:12751282.Google Scholar
Lewis, W. M. Jr., 1988. Primary production in the Orinoco River. Ecology 69:679692.Google Scholar
Longhurst, A. R. 1991. Role of the marine biosphere in the global carbon cycle. Limnology and Oceanography 36:15071526.Google Scholar
Maiorana, V. C., and Van Valen, L. In press. Energy and community evolution. [Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology.]Google Scholar
Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography 33:910930.CrossRefGoogle Scholar
Mapes, R. H., Fahrer, T. R., and Babcock, L. E. 1989. Sublethal and lethal injuries of Pennsylvanian conulariids from Oklahoma. Journal of Paleontology 63:3437.Google Scholar
Miller, A. I. 1988. Spatio-temporal transitions in Paleozoic bivalvia: an analysis of North American fossil assemblages. Historical Biology 1:251273.CrossRefGoogle Scholar
Miller, M. F., and Byers, C. W. 1984. Abundant and diverse early Paleozoic infauna indicated by the stratigraphic record. Geology 12:4043.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular land plant diversification: an analysis at the species level. Pp. 98128in Valentine, 1985.Google Scholar
Ollier, C. 1984. Weathering. Longman, London.Google Scholar
Padian, K., and Clemens, W. A. 1985. Terrestrial vertebrate diversity: episodes and insights. Pp. 4196in Valentine 1985.Google Scholar
Paerl, H. W., Rudek, J., and Mullen, M. A. 1990. Stimulation of phytoplankton production in coastal waters by natural rainfall input. Marine Biology 107:247254.Google Scholar
Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100:6575.Google Scholar
Parris, J. T. 1982a. Upwelling and petroleum source beds, with reference to Paleozoic. American Association of Petroleum Geologists Bulletin 66:750774.Google Scholar
Parris, J. T. 1982b. Atmospheric circulation, upwelling and organic-rich rocks in the Mesozoic and Cenozoic Eras. Palaeogeography, Palaeoclimatology, Palaeoecology 40:3166.Google Scholar
Parsons, K. M., and Brett, C. E. 1991. Taphonomic processes and biases in modern marine environments: an actualist perspective on fossil assemblage preservation. Pp. 2265in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Parsons, T. R., Takahashi, M., and Hargrave, B. 1984. Biological oceanographic processes, 3rd ed. Pergamon, Oxford.Google Scholar
Pearse, V., Pearse, J., Buchsbaum, M., and Buchsbaum, R. 1987. Living invertebrates. Blackwell Scientific, Palo Alto, California.Google Scholar
Peck, L. S., Curry, G. B., Ansell, A. D., and James, M. 1989. Temperature and starvation effects on the metabolism of the brachiopod, Terebratulina retusa (L.). Historical Biology 2:101110.Google Scholar
Pickerill, R. K. 1980. Phanerozoic flysch trace fossil diversity—observations based on an Ordovician flysch ichnofauna from the Aroostook-Matapedia Carbonate Belt of northern New Brunswick. Canadian Journal of Earth Sciences 17:12591270.Google Scholar
Pickerill, R. K., and Keppie, J. D. 1981. Observations on the ichnology of the Meguma Group (?Cambrian-Ordovician) of Nova Scotia. Maritime Sediments and Atlantic Geology 17:130138.Google Scholar
Pickerill, R. K., and Williams, P. F. 1989. Deep burrowing in the early Palaeozoic deep sea: examples from the Cambrian(?)-Early Ordovician Meguma Group of Nova Scotia. Canadian Journal of Earth Sciences 26:10611068.Google Scholar
Pojeta, J. 1975. Fordilla troyensis Barrande and early pelecypod phylogeny. Bulletin of American Paleontology 67:363384.Google Scholar
Prakash, A. 1971. Terrigenous organic matter and coastal phytoplankton fertility. Pp. 351368in Costlow, J. D. Jr., ed. Fertility in the sea, Vol. 2. Gordon and Breach, New York.Google Scholar
Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., and Walsh, J. J. 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochemistry 4:6377.Google Scholar
Prokop, M., Döhring, W., Ostrom, J. H., and Wellnhofer, P. 1988. Computed tomography of Archaeopteryx. Paleobiology 14:206213.Google Scholar
Raup, D. M. 1972. Approaches to morphologic analysis. Pp. 2844in Schopf, T. J. M. ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Raymont, J. E. G. 1980. Plankton productivity in the oceans, 2d ed., Vol. 1, phytoplankton. Pergamon, Oxford.Google Scholar
Retallack, G. J. 1986. The fossil record of soils. Pp. 157in Wright, V. P., ed. Paleosols: their recognition and interpretation. Blackwell Scientific, Oxford.Google Scholar
Retallack, G. J., and Feakes, C. 1987. Trace fossil evidence for Late Ordovician animals on land. Science 235:6163.Google Scholar
Rex, M. A. 1983. Geographic patterns of species diversity in the deep-sea benthos. Pp. 453472in Rowe 1983.Google Scholar
Rhodes, M. C. 1992. Comparative physiology of suspension feeding in living articulate brachiopods and bivalves—implications for large-scale evolutionary patterns. P. 244in Fifth North American Paleontological Convention, Abstracts and Program. Paleontological Society Special Publication Number 6.Google Scholar
Rhodes, M. C., and Thompson, R. J. 1993. Comparative physiology of suspension-feeding in living brachiopods and bivalves: evolutionary implications. Paleobiology 19:322334.Google Scholar
Richards, R. P., and Shabica, C. W. 1969. Cylindrical living burrows in Ordovician dalmanellid brachiopod beds. Journal of Paleontology 43:838941.Google Scholar
Robinson, J. M. 1990a. Lignin, land plants, and fungi: biological evolution affecting Phanerozoic oxygen balance. Geology 15:607610.Google Scholar
Robinson, J. M. 1990b. The burial of organic carbon as affected by the evolution of land plants. Historical Biology 3:189202.CrossRefGoogle Scholar
Ronov, A. B., Khain, V. E., Balukhovsky, A. N., and Seslavinsky, K. B. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology 25:311325.Google Scholar
Rowe, G. T., ed. 1983a. The sea, Vol. 8. Deep-Sea biology. Wiley, New York.Google Scholar
Rowe, G. T., ed. 1983b. Biomass and production of the deep-sea macrobenthos. Pp. 97121in Rowe. 1983a.Google Scholar
Runnegar, B., and Bentley, C. 1983. Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnergari Jell. Journal of Paleontology 57:7392.Google Scholar
Schlesinger, W. H. 1991. Biogeochemistry: an analysis of global change. Academic Press, San Diego, California.Google Scholar
Schwartzman, D. W., and Volk, T. 1989. Biotic enhancement of weathering and the habitability of Earth. Nature 340:457460.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur konstruktions-morphologie. Lethaia 3:393396.Google Scholar
Seilacher, A. 1974. Flysch trace-fossils: evolution of behavioral diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte. 1974:233245.Google Scholar
Selden, P. A. 1990. Invertebrates [Terrestrialization]. Pp. 6468in Briggs and Crowther 1990.Google Scholar
Sepkoski, J. J. Jr., 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr., 1992. Phylogenetic and ecologic patterns in the Phanerozoic history of marine biodiversity. Pp. 77100in Eldredge, N., ed. Systematics, ecology and the biodiversity crisis. Columbia University Press, New York.Google Scholar
Sepkoski, J. J. Jr., 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in Valentine 1985.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity: a strong signal from the fossil record. Nature 293:435437.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding. Pp. 298312in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer-Verlag, Berlin.Google Scholar
Shear, W. A. 1990. Silurian-Devonian terrestrial arthropods. Pp. 197213in Mikulic, D. G., convenor. Arthropod paleobiology. The Paleontological Society, Short Course in Paleontology Number 3.Google Scholar
Sheehan, P. M., and Lespérance, P. J. 1978. Effect of predation on the population dynamics of a Devonian brachiopod. Journal of Paleontology 53:812817.Google Scholar
Signor, P. W. III. 1990. Patterns of diversification. Pp. 130135in Briggs and Crowther 1990.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.Google Scholar
Simpson, E. L. 1991. An exhumed Lower Cambrian tidal flat: the Antietam Formation, central Virginia, U. S. A. Pp. 123134in Smith, D. G., Reinson, G. E., Zaitlin, B. A., and Rahmani, R. A., eds. Clastic tidal sedimentology. Canadian Society of Petroleum Geologists Memoir 16.Google Scholar
Sohl, N. 1969. The fossil record of shell boring by snails. American Zoologist 9:725734.CrossRefGoogle Scholar
Springer, D. A., and Bambach, R. K. 1985. Gradient versus cluster analysis of fossil assemblages: a comparison from the Ordovician of southwestern Virginia. Lethaia 18:181198.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve mollusks—a consequence of mantle fusion. Journal of Paleontology 42:214229.Google Scholar
Stanley, S. M. 1973. An explanation of Cope's Rule. Evolution 27:126.Google Scholar
Stanley, S. M. 1976. Ideas on the timing of metazoan diversification. Paleobiology 2:209219.Google Scholar
Steneck, P. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.Google Scholar
Stump, T. E. 1975. Pleistocene molluscan paleoecology and community structure of the Puerto Libertad region, Sonora, Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 17:177226.Google Scholar
Tappan, H. 1982. Extinction or survival: selectivity and causes of Phanerozoic crises. Pp. 265276in Silver, L. T. and Schulz, P. H., eds. Geological implications of impacts of large asteroids and comets on earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Tappan, H. 1986. Phytoplankton: below the salt at the global table. Journal of Paleontology 60:545554.Google Scholar
Tappan, H., and Loeblich, A. R. Jr., 1973. Evolution of oceanic plankton. Earth-Science Reviews 9:207240.Google Scholar
Tardy, Y., N'kounkou, R., and Probst, J.-L. 1989. The global water cycle and continental erosion during Phanerozoic time (570 my). American Journal of Science 289:455483.Google Scholar
Taylor, J. D., Morris, N. J., and Taylor, C. N. 1980. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology 23:375409.Google Scholar
Tavesz, M., and McCall, P., eds. 1983. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.Google Scholar
Thayer, C. W. 1981. Ecology of living brachiopods. Pp. 110126in Dutro, J. T. Jr., and Boardman, R. S., organizers. Lophophorates: notes for a short course. University Tennessee Department of Geological Sciences Studies in Geology Number 5.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625in Tevesz and McCall 1983.Google Scholar
Thayer, C. W. 1992. Escalating energy budgets and oligotrophic refugia: winners and drop-outs in the Red Queen's race. P. 290in Fifth North American Paleontological Convention, Abstracts and Program. Paleontological Society Special Publication Number 6.Google Scholar
Thiel, H. 1983. Mesobenthos and nannobenthos of the deep-sea. Pp. 167230in Rowe 1983.Google Scholar
Thomas, R. D. K. 1976. Gastropod predation on sympatric Neogene species of Glycymeris (Bivalvia) from the eastern United States. Journal of Paleontology 50:488499.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1971. Resource supply and species diversity patterns. Lethaia 4:5161.Google Scholar
Valentine, J. W., ed. 1985. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:179229.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1978. Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Vermeij, G. J. 1983. Shell-breaking predation through time. Pp. 649669in Tevesz and McCall 1983.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton, New Jersey.Google Scholar
Vermeij, G. J. 1992. Economics and evolution. P. 298in Fifth American Paleontological Convention, Abstracts and Program. Paleontological Society Special Publication Number 6.Google Scholar
Vidal, G., and Knoll, A. H. 1983. Proterozoic plankton. Pp. 265277in Medaris, L. G. Jr., Byers, C. W., Mickelson, D. M., and Shanks, Y. C., editors. Proterozoic geology: selected papers from an international Proterozoic symposium. Geological Society of America Memoir 161.Google Scholar
Volk, T. 1989. Rose of angiosperms as a factor in long-term climatic cooling. Geology 17:107110.Google Scholar
Walker, K. R., and Bambach, R. K. 1974. Feeding by benthic invertebrates: classification and terminology for paleoecological analysis. Lethaia 7:6778.Google Scholar
Walsh, J. J. 1989. How much shelf production reaches the deep sea? P. 175191in Berger et al. 1989.Google Scholar
Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society, London B309:569609.Google Scholar
Wilkinson, P. H., and Walker, J. C. G. 1989. Phanerozoic cycling of sedimentary carbonate. American Journal of Science 289:525548.Google Scholar
Woodin, S. A. 1981. Disturbance and community structure in a shallow water sand flat. Ecology 62:10521066.Google Scholar
Wright, V. P. 1990. Soils. Pp. 5759in Briggs and Crowther 1990.Google Scholar