Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T19:28:45.807Z Has data issue: false hasContentIssue false

Resolution analysis: A new approach to the gaps in the fossil record

Published online by Cambridge University Press:  08 April 2016

David E. Schindel*
Affiliation:
Peabody Museum of Natural History, and Department of Geology and Geophysics, Yale University, P.O. Box 6666, New Haven, Connecticut 06511

Abstract

Fine-scale sampling and analysis of fossiliferous sequences have been used in the debate over gradual vs. punctuated evolutionary transitions between species. The time scale and completeness of these studied sequences can be evaluated using criteria based on compilations of sedimentation rates over different time spans. A set of procedures, herein termed “resolution analysis,” provides the means for estimating the time scale and quality of sequences from which evolutionary patterns are distilled. Seven such published studies are evaluated with these procedures. In general, most fossil sequences are too incomplete on fine time scales to show changes operating within a standing population. Short segments of some sequences have the potential to document nearly complete morphological histories on time scales approaching generation-to-generation processes. Resolution analysis is a necessary step in inferences regarding fossil evidence of evolutionary tempo and mode.

Stratigraphic incompleteness necessarily results from the episodic nature of sedimentation. Many stratigraphic gaps result from minor, temporary shifts in sediment distribution, though other, more profound gaps result from changes in habitat conditions that must have had an effect on local biotic distribution. Analyzing paleontological patterns involves not only the positive evidence provided by fossiliferous strata, but also the negative evidence left as gaps by shifting habitat conditions. Thus, incomplete sequences may not be “flawed” records of continuous populations. Incomplete sequences may be a faithful, literal record of separate populations separated in time by local extinctions and re-invasions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1973. The Nature of the Stratigraphic Record. MacMillan Press Ltd.; London.Google Scholar
Barrell, J. 1917. Rhythms and the measurement of geologic time. Geol. Soc. Am. Bull. 28:745904.Google Scholar
Blackwelder, E. 1909. The valuation of unconformities. J. Geol. 17:289299.CrossRefGoogle Scholar
Bookstein, F. L., Gingerich, P. D., and Kluge, A. G. 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology. 4:120134.CrossRefGoogle Scholar
Boucot, A. J. 1982. Ecophenotypic or genotypic? Nature. 296:609610.CrossRefGoogle Scholar
Brinkmann, R. 1928. Statistisch-phylogenetische Untersuchingen an Ammoniten. Verhandl. V. Internat. Kongr. Vererbungswiss. (Supp, 1):496513.Google Scholar
Bromley, R. G. 1975. Trace fossils at omission surfaces. Pp. 399428. In: Frey, R. W., ed. The study of Trace Fossils. Springer-Verlag; New York.Google Scholar
Brown, F. H. 1972. Radiometric dating of sedimentary formations in the lower Omo Valley, Ethiopia. Pp. 273287. In: Bishop, W. W. and Miller, J. A., eds. Calibration of Hominoid Evolution. Scottish Academic Press; Edinburgh.Google Scholar
Brown, L. F. Jr., Cleaves, A. W. II, and Erxleben, A. W. 1973. Pennsylvanian depositional systems in north-central Texas. Bur. Econ. Geol. Univ. Texas Guidebook 14. 122pp.Google Scholar
Charlesworth, B. and Lande, R. 1982. Morphological stasis and developmental constraint: no problem for Neo-Darwinism. Nature. 296:610.CrossRefGoogle Scholar
Charlesworth, B., Lande, R., and Slatkin, M. 1982. A Neo-Darwinian commentary on macroevolution. Evolution. 36:474498.Google Scholar
Eldredge, N. 1972. Systematics and evolution of Phacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) in the Middle Devonian of North America, Bull. Am. Mus. Nat. Hist. 47:45114.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper and Co.; San Francisco.Google Scholar
Fürsich, F. T. 1978. The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia. 11:243250.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Am. J. Sci. 276:128.Google Scholar
Gingerich, P. D. 1979. Stratophenetic approach to phylogeny reconstruction in vertebrate paleontology, Pp. 4177. In: Cracraft, J. and Eldredge, N., eds. Phylogenetic Analysis and Paleontology. Columbia Univ. Press; New York.Google Scholar
Ginzburg, L. R. 1981. Bimodality of evolutionary rates. Paleobiology. 7:426429.Google Scholar
Ginzburg, L. R. and Rost, J. D. 1982. Are ‘punctuations’ artefacts of time-scales? Nature. 296:610.Google Scholar
Gould, S. J. 1969. An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda. Bull. Mus. Comp. Zool. 138:407531.Google Scholar
Gould, S. J. 1980. Is a new and general theory of evolution emerging? Paleobiology. 6:119131.Google Scholar
Gould, S. J. 1981. But not Wright enough: reply to Orzack. Paleobiology. 7:131134.Google Scholar
Gould, S. J. 1982. Darwinism and the expansion of evolutionary theory. Science. 216:380387.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology. 3:115151.Google Scholar
Harland, W. B., Smith, A. G., and Wilkock, B. 1964. The Phanerozoic Time Scale. Geol. Soc. London.Google Scholar
Jones, J. S. 1981. An uncensored page of fossil history. Nature. 293:427428.Google Scholar
Kauffman, E. G. 1972. Evolutionary rates and patterns of North American Cretaceous Mollusca, Internatl. Geol. Congr. 24th session, Sect. 7:174189.Google Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology. 1:150160.Google Scholar
Lewin, R. 1980. Evolutionary theory under fire. Science. 210:883887.Google Scholar
Lewin, R. 1981. No gap here in the fossil record. Science. 214:645646.Google Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage: DSDP Site 284, southwest Pacific. Paleobiology. 7:230240.CrossRefGoogle Scholar
Maynard Smith, J. 1981. Macroevolution. Nature. 289:1314.Google Scholar
Mayr, E. 1982. Questions concerning speciation. Nature. 296:609.Google Scholar
Newell, N. D. 1967. Paraconformities. Univ. Kans. Dept. Geol. Publ. 2:349367.Google Scholar
Orzack, S. H. 1981. The modern synthesis is partly Wright. Paleobiology. 7:128134.Google Scholar
Ozawa, T. 1975. Evolution of Lepidolina multiseptata (Permian foraminifer) in East Asia, Mem. Fac. Sci. Kyushu Univ., Ser. D. Geol. 23:117164.Google Scholar
Pettijohn, F. J., Potter, P. E., and Siever, R. 1973. Sand and Sandstone. Springer-Verlag; New York.CrossRefGoogle Scholar
Raup, D. M. and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology. 7:200215.Google Scholar
Raup, D. M. and Crick, R. E. 1982. Kosmoceras: evolutionary jumps and sedimentary breaks. Paleobiology. 8:90100.Google Scholar
Rieke, H. H. III and Chilingarian, G. V. 1974. Compaction of Argillaceous Sediments, Developments in Sedimentology 16. Elsevier; Amsterdam.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89:569584.Google Scholar
Schankler, D. M. 1981. Local extinction and ecological re-entry of early Eocene mammals. Nature. 293:135138.Google Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontological resolution. Paleobiology. 6:408426.Google Scholar
Schindel, D. E. 1982a. Punctuations in the Pennsylvanian history of Glabrocingulum (Mollusca: Archaeogastropoda), Bull. Geol. Soc. Am. 93:400408.2.0.CO;2>CrossRefGoogle Scholar
Schindel, D. E. 1982b. The gaps in the fossil record. Nature. 297:282284.Google Scholar
Schlanger, S. O., Douglas, R. G., Lancelot, Y., Moore, T. C., and Roth, P. H. 1971. Fossil preservation and diagenesis of pelagic carbonates from the Magellan Rise, Central North Pacific Ocean. In: Leg 17, Deep Sea Drill. Prog. Initial Rep. 17:407427.Google Scholar
Schopf, T. J. M. 1980. Macroevolution: The fifth dimension? Paleobiology. 6:380382.Google Scholar
Schopf, T. J. M. 1981. Punctuated equilibrium and evolutionary stasis. Paleobiology. 7:156166.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. First ed.; Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Simon and Schuster; New York.Google Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Natl. Acad. Sci. U.S.A. 72:646650.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman and Co.; San Francisco.Google Scholar
Stebbins, G. L. and Ayala, F. J. 1981. Is a new evolutionary synthesis necessary? Science. 213:967971.Google Scholar
van Andel, T. H. 1981. Consider the incompleteness of the geological record. Nature. 294:397398.Google Scholar
van Eysinga, F. W. B. 1978. Geological Time Table. Elsevier; Amsterdam.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: How does life evolve? South Afr. J. Sci. 76:6184.Google Scholar
Williamson, P. G. 1981. Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature. 293:437443.CrossRefGoogle Scholar
Williamson, P. G. 1982. Williamson replies. Nature. 296:611612.Google Scholar
Wilson, J. L. 1975. Carbonate Facies in Geologic History. Springer-Verlag, Berlin.CrossRefGoogle Scholar