Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T19:16:06.317Z Has data issue: false hasContentIssue false

Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe

Published online by Cambridge University Press:  08 April 2016

A. Hallam*
Affiliation:
Department of Geological Sciences, University of Birmingham, Birmingham B15 2TT, England

Abstract

A diversity and turnover analysis has been undertaken for a number of invertebrate groups in the Liassic of northwest Europe. There is a more or less steady rise in diversity from the early Hettangian through to the Pliensbachian, followed by a marked decline into the early Toarcian, after which it tends once more to increase. Ammonites stand out from the other invertebrates as having had an exceptionally high rate of turnover, with very short species durations.

Increase of neritic habitat area due to rise of sea level, and recolonization following the end-Triassic mass extinction event appear to be the promoters of diversity increase or radiation. Severe reductions of neritic habitat area with associated environmental deterioration, related either to episodic marine regressions or spreads of anoxic bottom waters, and bound up respectively with sea-level fall and rise, are seen as the prime factors responsible for increase of extinction rate. While the environmentally sensitive ammonites were affected by even minor regressions, the other, more eurytopic groups were evidently more resistant to these. The only event that warrants the term mass extinction, affecting nearly all the benthos and nekton but not the plankton, correlates precisely with the early Toarcian anoxic event. Several episodes can be recognized of migrations of organisms into Europe following extinctions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1956-1967. A Monograph of the British Liassic Rhynchonellidae. Palaeontogr. Soc. Lond. 172 p.Google Scholar
Bayer, U. and McGhee, G. R. 1985. Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors. Pp. 164220. In: Bayer, U. and Seilacher, A., eds. Sedimentary and Evolutionary Cycles. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
Bizon, G. and Oertli, H. 1961. Contribution a l'etude micro-paleontologique (Foraminiferes-Ostracodes) du Lias du Bassin de Paris (Septieme partie: conclusions). Bur. Res. Geol. Min. Mem. 4:107119.Google Scholar
Cope, J. C. W., Getty, T. A., Howarth, M. K., Morton, N., and Torrens, H. S. 1980. A correlation of Jurassic rocks in the British Isles. Part 1: Introduction and Lower Jurassic. Geol. Soc. Lond. Spec. Rep. 14. 73 p.Google Scholar
Copestake, P. and Johnson, B. 1981. The Hettangian to Toarcian. Pp. 81105. In: Jenkins, D. G. and Murray, J. W., eds. Stratigraphic Index of Fossil Foraminifera. Ellis Horwood; Chichester.Google Scholar
Donovan, D. T., Horton, A. and Ivimey-Cook, H. 1979. The transgression of the Lower Lias over the northern flank of the London Platform. J. Geol. Soc. Lond. 136:165173.Google Scholar
Donovan, D. T., Callomon, J. H., and Howarth, M. K. 1981. Classification of the Jurassic Ammonitina. Pp. 101155. In: House, M. K. and Senior, J. R., eds. The Ammonoidea. System. Ass. Spec. Vol. 18. Academic Press; London.Google Scholar
Doyle, P. 1986. British Toarcian (Lower Jurassic) Belemnites. Ph.D.University of London. 396 p.Google Scholar
Hallam, A. 1961. Cyclothems, transgressions and faunal change in the Lias of north west Europe. Trans. Edinburgh Geol. Soc. 18:132174.Google Scholar
Hallam, A. 1967. An environmental study of the Upper Domerian and Lower Toarcian in Great Britain. Phil. Trans. Roy. Soc. Lond. 252B:393445.Google Scholar
Hallam, A. 1975. Jurassic environments. Cambridge Univ. Press. 269 pp.Google Scholar
Hallam, A. 1976. Stratigraphic distribution and ecology of European Jurassic bivalves. Lethaia. 9:245259.Google Scholar
Hallam, A. 1978a. How is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology. 4:1625.CrossRefGoogle Scholar
Hallam, A. 1978b. Eustatic cycles in the Jurassic. Palaeogeog., Palaeoclimatol., Palaeocol. 23:132.Google Scholar
Hallam, A. 1981a. Facies Interpretation and the Stratigraphic Record. W. H. Freeman; Oxford. 291 pp.Google Scholar
Hallam, A. 1981b. The end-Triassic bivalve extinction event. Palaeogeog., Palaeoclimatol., Palaeoecol. 35:144.Google Scholar
Hallam, A. 1981c. A revised sea-level curve for the early Jurassic. J. Geol. Soc. Lond. 138:735743.CrossRefGoogle Scholar
Hallam, A. 1982. Patterns of speciation in Jurassic Gryphaea. Paleobiology. 8:354366.Google Scholar
Hallam, A. 1983. Early and mid Jurassic molluscan biogeography and the establishment of the Central Atlantic seaway. Palaeogeog., Palaeoclimatol., Palaeoecol. 43:181193.Google Scholar
Hallam, A. 1984. Pre-Quaternary sea-level changes. Ann. Rev. Earth Planet. Sci. 12:205243.CrossRefGoogle Scholar
Hallam, A. 1985. A review of Mesozoic climates. J. Geol. Soc. Lond. 142:433445.Google Scholar
Hallam, A. 1986. The Pliensbachian and Toarcian extinction events. Nature. 319:765768.Google Scholar
Hallam, A.In press. A re-evaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In: Wilgus, C. K., ed. Sea Level Changes—an Integrated Approach. S.E.P.M. Spec. Publ.Google Scholar
Hallam, A. and Bradshaw, M. J. 1979. Bituminous shales and oolitic ironstones as indicators of transgressions and regression. J. Geol. Soc. Lond. 136:157164.Google Scholar
Hamilton, G. B. 1982. Triassic and Jurassic calcareous nannofossils. Pp. 1739. In: Lord, A. R., ed. A Stratigraphic Index of Calcareous Nannofossils. Ellis Horwood; Chichester.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea-levels since the Triassic (250 millions years ago to Present). Science. 235:11561167.Google Scholar
House, M. R. 1985a. Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature. 313:1722.Google Scholar
House, M. R. 1985b. The ammonoid time-scale and ammonoid evolution. Pp. 273283. In: Snelling, N. J., ed. The Chronology of the Geological Record. Geol. Soc. London Mem. no. 10, Blackwell Scientific Publications; Oxford.Google Scholar
Howarth, M. K. 1958-1959. The Ammonites of the Family Amaltheidae in Britain. Monogr. Palaeont. Soc. 50 pp.Google Scholar
Howarth, M. K. 1962. The Jet Rock Series and the Alum Shale Series of the Yorkshire Coast. Proc. Yorks. Geol. Soc. 33:381422.Google Scholar
Jablonski, D. 1986. Causes and consequences of mass extinctions. Pp. 183229. In: Elliott, D. K., ed. Dynamics of Extinction. Wiley; New York.Google Scholar
Jenkyns, H. C. 1985. The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geol. Rundsch. 74:505518.Google Scholar
Jenkyns, H. C. and Clayton, C. J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentol. 33:87106.Google Scholar
Johnson, A. L. A. 1984. The paleobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana. 11:1235.Google Scholar
Johnson, A. L. A. 1985. The rate of evolutionary change in European Jurassic scallops. Pp. 91102. In: Cope, J. C. W. and Skelton, P. W., eds. Evolutionary Case Histories from the Fossil Record. Spec. Papers in Palaeontol.33. Palaeont. Ass. London.Google Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology. 2:479482.2.0.CO;2>CrossRefGoogle Scholar
Kauffman, E. G. 1977. Evolutionary rates and biostratigraphy. Pp. 109141. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Penn.Google Scholar
Kauffman, E. G. 1984. The fabric of Cretaceous marine extinctions. Pp. 151246. In: Berggren, W. A. and Van Couvering, J. A., eds. Catastrophes and Earth History. Princeton Univ. Press.Google Scholar
Küspert, W. 1982. Environmental changes during oil shale deposition as deduced from stable isotope ratios. Pp. 482501. In: Einsele, G. and Seilacher, A., eds. Cyclic and Event Stratification. Springer-Verlag; Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Lord, A. R. 1974. Ostracods from the Domerian and Toarcian of England. Palaeontol. 17:599622.Google Scholar
Lord, A. R. 1978. The Jurassic, Part I (Hettangian-Toarcian). Pp. 189212. In: Bate, R. H. and Robinson, E., eds. A Stratigraphic Index of British Ostracoda. Seel House Press, Liverpool.Google Scholar
Morris, K. A. 1980. Comparison of major sequences of organic-rich mud deposition in the British Jurassic. J. Geol. Soc. Lond. 127:157170.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. Spec. Pap. Geol. Soc. Am. no. 89:6391.Google Scholar
Phelps, M. 1985. A refined ammonite biostratigraphy for the Middle and Upper Carixian. Geobios. 18:321362.CrossRefGoogle Scholar
Ramsbottom, W. H. C. 1981. Eustatic control in carboniferous ammonoid biostratigraphy. Pp. 369388. In: House, M. R. and Senior, J. R., eds. The Ammonoidea. System. Ass. Spec. Vol. 18. Academic Press, London.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea floor spreading. J. Geol. 82:129143.CrossRefGoogle Scholar
Seilacher, A. 1982. Posidonia Shales (Toarcian, S. Germany)—stagnant basin model revalidated. Pp. 2555. In: Montanaro Gallitelli, E., ed. Palaeontology, Essential of Historical Geology. STEM Mucchi Press; Modena, Italy.Google Scholar
Sepkoski, J. J. 1976. Species diversity in the Phanerozoic: species area effects. Paleobiol. 2:298303.Google Scholar
Signor, P. W. and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Geol. Soc. Am. Spec. Paper. 190:291296.Google Scholar
Simberloff, D. 1974. Permo-Triassic extinctions: effects of an area on biotic equilibrium. J. Geol. 82:267274.Google Scholar
Simms, M. J. 1986a. Contrasting lifestyles in Lower Jurassic crinoids: a comparison of benthic and pseudopelagic Isocrinida. Palaeontol. 29:475494.Google Scholar
Simms, M. J. 1986b. Taxonomy and paleobiology of British Lower Jurassic crinoids. Ph.D. thesis, University of Birmingham. 420 pp.Google Scholar
Smith, P. L. 1983. The Pliensbachian ammonite Dayiceras dayiceroides and early Jurassic paleogeography. Can. J. Earth Sci. 20:8691.Google Scholar
Stanley, S. M. 1984. Marine mass extinctions: a dominant role for temperatures. Pp. 69118. In: Nitecki, M., ed. Extinctions: Univ. Chicago Press.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios. 1:1736.Google Scholar
Stevens, G. R. 1973. Jurassic belemnites. Pp. 259274. In: Hallam, A., ed. Atlas of Palaeobiogeography, Elsevier; Amsterdam.Google Scholar
Vail, P. R. and Todd, R. G. 1981. Northern North Sea Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy. Pp. 216235. In: Illing, L. V. and Hobson, G., eds. Petroleum Geology of the Continental Shelf of North-West Europe. Heydon; London.Google Scholar
Vail, P. R., Hardenbol, J., and Todd, R. S. 1984. Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy. Mem. Am. Ass. Petrol. Geol. no. 36:129144.Google Scholar
Wille, W. 1982. Evolution and ecology of Upper Liassic dinoflagellates from south west Germany. N. Jahrb. Geol Palaont. Abh. 164:7482.Google Scholar
Williams, A. and Hurst, J. M. 1977. Brachiopod evolution. Pp. 79122. In: Hallam, A., ed. Patterns of Evolution as Illustrated by the Fossil Record. Elsevier, Amsterdam.Google Scholar
Wyatt, A. R. 1987. Shallow water areas in space and time. J. Geol. Soc. Lond. 144:115120.Google Scholar
Ziegler, P. A. 1982. Geological Atlas of Western and Central Europe. Shell, The Hague. 130 pp., end. 40.Google Scholar